Skip to main content

Advertisement

Log in

Evolving cervical imaging technologies to predict preterm birth

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Preterm birth, defined as delivery at less than 37 weeks’ gestation, increases maternal-fetal morbidity and mortality and places heavy financial and emotional burdens on families and society. Although premature cervical remodeling is a major factor in many preterm deliveries, how and why this occurs is poorly understood. This review describes existing and emerging imaging techniques and their advantages and disadvantages in assessing cervical remodeling. Brightness mode (B-mode) ultrasound is used to measure the cervical length, currently the gold standard for determining risk of preterm birth. Several new B-mode ultrasound techniques are being developed, including measuring attenuation, cervical gland area, and the cervical consistency index. Shear wave speed can differentiate between soft (ripe) and firm (unripe) cervices by measuring the speed of ultrasound through a tissue. Elastography provides qualitative information regarding cervical stiffness by compressing the tissue with the ultrasound probe. Raman spectroscopy uses a fiber optic probe to assess the biochemical composition of the cervix throughout pregnancy. Second harmonic generation microscopy uses light to quantify changes in collagen fiber structure and size during cervical maturation. Finally, photoacoustic endoscopy records light-induced sound to determine optical characteristics of cervical tissue. In the long term, a combination of several imaging approaches, combined with consideration of clinical epidemiologic characteristics, will likely be required to accurately predict preterm birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McIntosh J, Feltovich H, Berghella V, Manuck T (2016) The role of routine cervical length screening in selected high- and low-risk women for preterm birth prevention. Am J Obstet Gynecol 215:B2–B7. https://doi.org/10.1016/j.ajog.2016.04.027

    Article  PubMed  Google Scholar 

  2. Preterm birth, (n.d.). https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed January 10, 2020)

  3. Societal Costs of Preterm Birth - Preterm Birth - NCBI Bookshelf, (n.d.). https://www.ncbi.nlm.nih.gov/books/NBK11358/ (accessed December 5, 2019)

  4. Feltovich H, Hall TJ, Berghella V (2012) Beyond cervical length: emerging technologies for assessing the pregnant cervix. Am J Obstet Gynecol 207:345–354. https://doi.org/10.1016/j.ajog.2012.05.015

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vink J, Feltovich H (2016) Cervical etiology of spontaneous preterm birth. Semin Fetal Neonatal Med 21:106–112. https://doi.org/10.1016/j.siny.2015.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  6. C.M. O’Brien, E. Vargis, C. Slaughter, A.P. Rudin, J.L. Herington, K.A. Bennett, J. Reese, A. Mahadevan-Jansen, Characterization of human cervical remodeling throughout pregnancy using in vivo Raman spectroscopy, in: Photonic Ther. Diagnostics XI, SPIE, 2015: p. 93032F. https://doi.org/10.1117/12.2077775

  7. Venkatesh KK, Meeker JD, Cantonwine DE, McElrath TF, Ferguson KK (2019) Association of antenatal depression with oxidative stress and impact on spontaneous preterm birth. J Perinatol 39:554–562. https://doi.org/10.1038/s41372-019-0317-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wallenstein MB, Jelliffe-Pawlowski LL, Yang W, Carmichael SL, Stevenson DK, Ryckman KK, Shaw GM (2015) Inflammatory biomarkers and spontaneous preterm birth among obese women. J Matern Neonatal Med 29:1–6. https://doi.org/10.3109/14767058.2015.1124083

    Article  CAS  Google Scholar 

  9. Aung MT, Yu Y, Ferguson KK, Cantonwine DE, Zeng L, McElrath TF, Pennathur S, Mukherjee B, Meeker JD (2019) Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers. Sci Rep 9:1–17. https://doi.org/10.1038/s41598-019-53448-z

    Article  CAS  Google Scholar 

  10. Sun B, Parks WT, Simhan HN, Bertolet M, Catov JM (2020) Early pregnancy immune profile and preterm birth classified according to uteroplacental lesions. Placenta. 89:99–106. https://doi.org/10.1016/j.placenta.2019.12.007

    Article  PubMed  Google Scholar 

  11. Myers KM, Feltovich H, Mazza E, Vink J, Bajka M, Wapner RJ, Hall TJ, House M (2015) The mechanical role of the cervix in pregnancy. J Biomech 48:1511–1523. https://doi.org/10.1016/j.jbiomech.2015.02.065

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nott JP, Bonney EA, Pickering JD, Simpson NAB (2016) The structure and function of the cervix during pregnancy. Transl Res Anat 2:1–7. https://doi.org/10.1016/j.tria.2016.02.001

    Article  Google Scholar 

  13. Timmons B, Akins M, Mahendroo M (2010) Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab 21:353–361. https://doi.org/10.1016/j.tem.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.Y. Vink, S. Qin, C.O. Brock, N.M. Zork, H.M. Feltovich, X. Chen, P. Urie, K.M. Myers, T.J. Hall, R. Wapner, J.K. Kitajewski, C.J. Shawber, G. Gallos, A new paradigm for the role of smooth muscle cells in the human cervix, in: Am. J. Obstet. Gynecol., Mosby Inc., 2016: pp. 478.e1–478.e11. https://doi.org/10.1016/j.ajog.2016.04.053

  15. Myers K, Socrate S, Tzeranis D, House M (2009) Changes in the biochemical constituents and morphologic appearance of the human cervical stroma during pregnancy. Eur J Obstet Gynecol Reprod Biol 144:82–89. https://doi.org/10.1016/j.ejogrb.2009.02.008

    Article  CAS  Google Scholar 

  16. Myers KM, Paskaleva AP, House M, Socrate S (2008) Mechanical and biochemical properties of human cervical tissue. Acta Biomater 4:104–116. https://doi.org/10.1016/j.actbio.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  17. Reusch LM, Feltovich H, Carlson LC, Hall G, Campagnola PJ, Eliceiri KW, Hall TJ (2013) Nonlinear optical microscopy and ultrasound imaging of human cervical structure. J Biomed Opt 18:031110. https://doi.org/10.1117/1.jbo.18.3.031110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Racicot K, Cardenas I, Wünsche V, Aldo P, Guller S, Means RE, Romero R, Mor G (2013) Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J Immunol 191:934–941. https://doi.org/10.4049/jimmunol.1300661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Critchfield AS, Yao G, Jaishankar A, Friedlander RS, Lieleg O, Doyle PS, McKinley G, House M, Ribbeck K (2013) Cervical mucus properties stratify risk for preterm birth. PLoS One 8:e69528. https://doi.org/10.1371/journal.pone.0069528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aflatoonian R, Amjadi F, Mehdizadeh M, Salehi E (2014) Role of the innate immunity in female reproductive tract. Adv Biomed Res 3:1. https://doi.org/10.4103/2277-9175.124626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nallasamy S, Mahendroo M (2017) Distinct roles of cervical epithelia and stroma in pregnancy and parturition. Semin Reprod Med 35:190–199. https://doi.org/10.1055/s-0037-1599091

    Article  PubMed  Google Scholar 

  22. Word RA, Li X-H, Hnat M, Carrick K (2007) Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med 25:69–80. https://doi.org/10.1055/s-2006-956777

    Article  CAS  PubMed  Google Scholar 

  23. Carlson LC, Feltovich H, Palmeri ML, Dahl JJ, Munoz del Rio A, Hall TJ (2014) Estimation of shear wave speed in the human uterine cervix. Ultrasound Obstet Gynecol 43:452–458. https://doi.org/10.1002/uog.12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yellon SM (2017) Contributions to the dynamics of cervix remodeling prior to term and preterm birth†. Biol Reprod 96:13–23. https://doi.org/10.1095/biolreprod.116.142844

    Article  PubMed  Google Scholar 

  25. Son M, Miller ES (2017) Predicting preterm birth: cervical length and fetal fibronectin. Semin Perinatol 41:445–451. https://doi.org/10.1053/j.semperi.2017.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  26. Berghella V, Rafael TJ, Szychowski JM, Rust OA, Owen J (2011) Cerclage for short cervix on ultrasonography in women with singleton gestations and previous preterm birth: a meta-analysis. Obstet Gynecol 117:663–671. https://doi.org/10.1097/AOG.0b013e31820ca847

    Article  PubMed  Google Scholar 

  27. Iams JD, Goldenberg RL, Meis PJ, Mercer BM, Moawad A, Das A, Thom E, McNellis D, Copper RL, Johnson F, Roberts JM (1996) The length of the cervix and the risk of spontaneous premature delivery. N Engl J Med 334:567–573. https://doi.org/10.1056/NEJM199602293340904

    Article  CAS  PubMed  Google Scholar 

  28. Parry S, Simhan H, Elovitz M, Iams J (2012) Universal maternal cervical length screening during the second trimester: pros and cons of a strategy to identify women at risk of spontaneous preterm delivery. Am J Obstet Gynecol 207:101–106. https://doi.org/10.1016/j.ajog.2012.04.021

    Article  PubMed  Google Scholar 

  29. Second-trimester evaluation of cervical length for prediction of spontaneous preterm birth - UpToDate, (n.d.). https://www.uptodate.com/contents/second-trimester-evaluation-of-cervical-length-for-prediction-of-spontaneous-preterm-birth (accessed January 27, 2020)

  30. Parra-Saavedra M, Gómez L, Barrero A, Parra G, Vergara F, Navarro E (2011) Prediction of preterm birth using the cervical consistency index. Ultrasound Obstet Gynecol 38:44–51. https://doi.org/10.1002/uog.9010

    Article  CAS  PubMed  Google Scholar 

  31. Bujold E, Pasquier JC, Simoneau J, Arpin MH, Duperron L, Morency AM, Audibert F (2006) Intra-amniotic sludge, short cervix, and risk of preterm delivery. J Obstet Gynaecol Can 28:198–202. https://doi.org/10.1016/S1701-2163(16)32108-9

    Article  PubMed  Google Scholar 

  32. E. Himaya, N. Rhalmi, M. Girard, Amelie Tétu, J. Desgagné, B. Abdous, J. Gekas, Y. Giguère, E. Bujold, Midtrimester intra-amniotic sludge and the risk of spontaneous preterm birth, (n.d.). https://doi.org/10.1055/s-0031-1295638

  33. Ventura W, Nazario C, Ingar J, Huertas E, Limay O, Castillo W (2011) Risk of impending preterm delivery associated with the presence of amniotic fluid sludge in women in preterm labor with intact membranes. Fetal Diagn Ther 30:116–121. https://doi.org/10.1159/000325461

    Article  PubMed  Google Scholar 

  34. McFarlin BL, Bigelow TA, Laybed Y, O’Brien WD, Oelze ML, Abramowicz JS (2010) Ultrasonic attenuation estimation of the pregnant cervix: a preliminary report. Ultrasound Obstet Gynecol 36:218–225. https://doi.org/10.1002/uog.7643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao LX, Zagzebski JA, Madsen EL (1990) Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors. Ultrason Imaging 12:58–70. https://doi.org/10.1177/016173469001200105

    Article  CAS  PubMed  Google Scholar 

  36. Sekiya T, Ishihara K, Yoshimatsu K, Fukami T, Kikuchi S, Araki T (1998) Detection rate of the cervical gland area during pregnancy by transvaginal sonography in the assessment of cervical maturation. Ultrasound Obstet Gynecol 12:328–333. https://doi.org/10.1046/j.1469-0705.1998.12050328.x

    Article  CAS  PubMed  Google Scholar 

  37. Marsoosi V, Pirjani R, Asghari Jafarabadi M, Mashhadian M, Ziaee S, Moini A (2017) Cervical gland area as an ultrasound marker for prediction of preterm delivery: a cohort study. Int J Reprod Biomed (Yazd, Iran) 15:729–734 http://www.ncbi.nlm.nih.gov/pubmed/29404535 (accessed January 27, 2020)

    Google Scholar 

  38. Afzali N, Mohajeri M, Malek A, Alamatian A (2012) Cervical gland area: a new sonographic marker in predicting preterm delivery. Arch Gynecol Obstet 285:255–258. https://doi.org/10.1007/s00404-011-1986-7

    Article  PubMed  Google Scholar 

  39. Carlson LC, Feltovich H, Palmeri ML, Muñoz Del Rio A, Hall TJ (2014) Statistical analysis of shear wave speed in the uterine cervix. IEEE Trans Ultrason Ferroelectr Freq Control 61:1651–1660. https://doi.org/10.1109/TUFFC.2014.006360

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carlson LC, Romero ST, Palmeri ML, Muñoz del Rio A, Esplin SM, Rotemberg VM, Hall TJ, Feltovich H (2015) Changes in shear wave speed pre- and post-induction of labor: a feasibility study. Ultrasound Obstet Gynecol 46:93–98. https://doi.org/10.1002/uog.14663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muller M, Aït-Belkacem D, Hessabi M, Gennisson JL, Grangé G, Goffinet F, Lecarpentier E, Cabrol D, Tanter M, Tsatsaris V (2015) Assessment of the cervix in pregnant women using shear wave elastography: a feasibility study. Ultrasound Med Biol 41:2789–2797. https://doi.org/10.1016/j.ultrasmedbio.2015.06.020

    Article  PubMed  Google Scholar 

  42. Hernandez-Andrade E, Hassan SS, Ahn H, Korzeniewski SJ, Yeo L, Chaiworapongsa T, Romero R (2013) Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography. Ultrasound Obstet Gynecol 41:152–161. https://doi.org/10.1002/uog.12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Molina FS, Gómez LF, Florido J, Padilla MC, Nicolaides KH (2012) Quantification of cervical elastography: a reproducibility study. Ultrasound Obstet Gynecol 39:685–689. https://doi.org/10.1002/uog.11067

    Article  CAS  PubMed  Google Scholar 

  44. Badir S, Mazza E, Zimmermann R, Bajka M (2013) Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique. Prenat Diagn 33:737–741. https://doi.org/10.1002/pd.4116

    Article  PubMed  Google Scholar 

  45. Fruscalzo A, Mazza E, Feltovich H, Schmitz R (2016) Cervical elastography during pregnancy: a critical review of current approaches with a focus on controversies and limitations. J Med Ultrason 43:493–504. https://doi.org/10.1007/s10396-016-0723-z

    Article  Google Scholar 

  46. O’Brien CM, Herington JL, Brown N, Pence IJ, Paria BC, Slaughter JC, Reese J, Mahadevan-Jansen A (2017) In vivo Raman spectral analysis of impaired cervical remodeling in a mouse model of delayed parturition. Sci Rep 7. https://doi.org/10.1038/s41598-017-07047-5

  47. O’Brien CM, Vargis E, Rudin A, Slaughter JC, Thomas G, Newton JM, Reese J, Bennett KA, Mahadevan-Jansen A (2018) In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy. Am J Obstet Gynecol 218:528.e1–528.e18. https://doi.org/10.1016/j.ajog.2018.01.030

    Article  CAS  Google Scholar 

  48. Y. Zhang, M.L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, X. Li, D. W. Russell, A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy, (n.d.). https://doi.org/10.1073/pnas.1121495109/-/DCSupplemental

  49. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669. https://doi.org/10.1038/nprot.2012.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akins ML, Luby-Phelps K, Mahendroo M (2010) Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth. J Biomed Opt 15:026020. https://doi.org/10.1117/1.3381184

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mahendroo M (2012) Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction 143:429–438. https://doi.org/10.1530/REP-11-0466

    Article  CAS  PubMed  Google Scholar 

  52. Qu Y, Hu P, Shi J, Maslov K, Zhao P, Li C, Ma J, Garcia-Uribe A, Meyers K, Diveley E, Pizzella S, Muench L, Punyamurthy N, Goldstein N, Onwumere O, Alisio M, Meyenburg K, Maynard J, Helm K, Altieri E, Slaughter J, Barber S, Burger T, Kramer C, Chubiz J, Anderson M, Mccarthy R, England SK, Macones GA, Stout MJ, Tuuli M, Wang LV (2018) In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra. J Biomed Opt 23:121621. https://doi.org/10.1117/1.JBO.23.12.121621

    Article  CAS  PubMed Central  Google Scholar 

  53. Qu Y, Li C, Shi J, Chen R, Xu S, Rafsanjani H, Maslov K, Krigman H, Garvey L, Hu P, Zhao P, Meyers K, Diveley E, Pizzella S, Muench L, Punyamurthy N, Goldstein N, Onwumere O, Alisio M, Meyenburg K, Maynard J, Helm K, Slaughter J, Barber S, Burger T, Kramer C, Chubiz J, Anderson M, McCarthy R, England SK, Macones GA, Zhou Q, Shung KK, Zou J, Stout MJ, Tuuli M, Wang LV (2018) Transvaginal fast-scanning optical-resolution photoacoustic endoscopy. J Biomed Opt 23. https://doi.org/10.1117/1.JBO.23.12.121617

  54. Krauklis AE, Gagani AI, Echtermeyer AT (2018) Near-infrared spectroscopic method for monitoring water content in epoxy resins and fiber-reinforced composites. Materials (Basel) 11. https://doi.org/10.3390/ma11040586

  55. Cervical Length Education and Review Program, (n.d.). https://clear.perinatalquality.org/wfImageCriteria.aspx (accessed January 6, 2020)

Download references

Acknowledgments

The authors thank Megan Steiner, RN, for her help obtaining ultrasound images. The authors would also like to thank Debbie Frank for her assistance with editing this article.

Funding

The authors are supported, in part, by a Research Grant from March of Dimes and by the Washington University School of Medicine Department of Obstetrics and Gynecology Division of Clinical Research.

Author information

Authors and Affiliations

Authors

Contributions

SP, NEH, and SKE conceived the presented information. SP took the lead in writing the manuscript with input from all the authors. SP obtained original ultrasound images. All authors provided critical feedback and helped shape the manuscript.

Corresponding author

Correspondence to Sarah K. England.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

Authors have obtained permission to reprint relevant figures from the original authors and the publishers.

Additional information

This article is a contribution to the special issue on Preterm birth: Pathogenesis and clinical consequences revisited - Guest Editors: Anke Diemert and Petra Arck

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzella, S., El Helou, N., Chubiz, J. et al. Evolving cervical imaging technologies to predict preterm birth. Semin Immunopathol 42, 385–396 (2020). https://doi.org/10.1007/s00281-020-00800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-020-00800-5

Keywords

Navigation