Skip to main content
Log in

Effect of a Soft Magnetic Phase on the Processes of Magnetization Reversal of a Hard/Soft Magnetic Bilayer

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Magnetization reversal of a hard/soft magnetic bilayer in an external magnetic field has been studied by the Monte Carlo method. The magnetization reversal curves of a magnetic bilayer have been built at various thicknesses of the soft magnetic layer. The effects of the intralayer exchange interaction and the anisotropy constant of the soft magnetic layer on the magnetization reversal have been studied, too. The phase diagrams of the magnetic bilayer are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).

    Article  ADS  Google Scholar 

  2. E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, Phys. Rev. B 58, 12193 (1998).

    Article  ADS  Google Scholar 

  3. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).

    Article  ADS  Google Scholar 

  4. E. Goto, N. Hayashi, T. Miyashita, and K. Nakagawa, J. Appl. Phys. 36, 2951 (1965).

    Article  ADS  Google Scholar 

  5. K. Mibu, T. Nagahama, and T. Shinjo, J. Magn. Magn. Mater. 163, 75 (1996).

    Article  ADS  Google Scholar 

  6. R. Coehoorn, D. B. de Mooij, and C. de Waard, J. Magn. Magn. Mater. 80, 101 (1989).

    Article  ADS  Google Scholar 

  7. M. Amato, M. G. Pini, and A. Rettori, Phys. Rev. B 60, 3414 (1999).

    Article  ADS  Google Scholar 

  8. R. Andreescu and M. J. O’Shea, J. Appl. Phys. 91, 8183 (2002).

    Article  ADS  Google Scholar 

  9. Shi-Shen Yan, M. Elkawni, D. S. Li, H. Garmestani, J. P. Liu, J. L. Weston, and G. Zangari, J. Appl. Phys. 94, 4535 (2003).

    Article  ADS  Google Scholar 

  10. Guang-hua Guo, Guang-fu Zhang, San-yuan Song, D. W. Wang, G. J. Bowden, and P. A. J. de Groot, Appl. Phys. Lett. 93, 102505 (2008).

    Article  ADS  Google Scholar 

  11. F. Montaigne, S. Mangin, and Y. Henry, Phys. Rev. B 67, 144412 (2003).

    Article  ADS  Google Scholar 

  12. J. McCord, Y. Henry, T. Hauet, F. Montaigne, E. E. Fullerton, and S. Mangin, Phys. Rev. B 78, 094417 (2008).

    Article  ADS  Google Scholar 

  13. V. M. Uzdin, A. Vega, A. Khrenov, W. Keune, V. E. Kuncser, J. S. Jiang, and S. D. Bader, Phys. Rev. B 85, 024409 (2012).

    Article  ADS  Google Scholar 

  14. Cai-yin You, ChoongJin Yang, Z. D. Zhang, Jong Soo Han, and X. K. Sun, J. Mater. Res. 19, 786 (2004).

    ADS  Google Scholar 

  15. V. M. Uzdin and A. Vega, Nanotechnology 19, 315401 (2008).

    Article  ADS  Google Scholar 

  16. A. V. Khvalkovskii, K. A. Zvezdin, A. A. Zvezdin, V. S. Gornakov, D. G. Skachkov, and P. Perlo, Phys. B (Amsterdam, Neth.) 372, 358 (2006).

  17. N. de Sousa, A. Apolinario, F. Vernay, P. M. S. Monteiro, F. Albertini, F. Casoli, H. Kachkachi, and D. S. Schmool, Phys. Rev. B 82, 104433 (2010).

    Article  ADS  Google Scholar 

  18. P. Chowdhury, M. Krishnan, Harish C. Barshilia, D. V. Sridhara Rao, Deepak Kumar, and C. Shivakumara, J. Magn. Magn. Mater. 342, 74 (2013).

    Article  ADS  Google Scholar 

  19. S. Djedai, E. Talbot, and P. E. Berche, J. Magn. Magn. Mater. 368, 29 (2014).

    Article  ADS  Google Scholar 

  20. Rajan Goyal, Nishta Arora, Akanksha Kapoor, S. Lamba, and S. Annapoorni, J. Alloys Compd. 695, 1014 (2017).

    Article  Google Scholar 

  21. G. S. Patrin, I. A. Turpanov, V. I. Yushkov, A. V. Kobyakov, K. G. Patrin, G. Yu. Yurkin, and Ya. A. Zhivaya, JETP Lett. 109, 320 (2019).

    Article  ADS  Google Scholar 

  22. A. V. Kobyakov, I. A. Turpanov, G. S. Patrin, V. I. Yush-kov, S. A. Yarikov, M. N. Volochaev, and Ya. A. Zhivaya, J. Phys.: Conf. Ser. 1389, 012028 (2019).

    Google Scholar 

  23. L. V. Dzemiantsova, G. Meier, and R. Röhlsberger, Sci. Rep. 5, 16153 (2015).

    Article  ADS  Google Scholar 

  24. T. A. Taaev, K. Sh. Khizriev, and A. K. Murtazaev, J. Exp. Theor. Phys. 129, 277 (2019).

    Article  ADS  Google Scholar 

  25. T. A. Taaev, K. Sh. Khizriev, A. K. Murtazaev, and V. M. Uzdin, J. Alloys Compd. 678, 167 (2016).

    Article  Google Scholar 

  26. T. A. Taaev, K. Sh. Khizriev, and A. K. Murtazaev, J. Exp. Theor. Phys. 124, 924 (2017).

    Article  ADS  Google Scholar 

  27. T. A. Taaev, K. Sh. Khizriev, and A. K. Murtazaev, J. Alloys Compd. 785, 1253 (2019).

    Article  Google Scholar 

  28. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-32-00526 “mol_a.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taaev, T.A., Khizriev, K.S. & Murtazaev, A.K. Effect of a Soft Magnetic Phase on the Processes of Magnetization Reversal of a Hard/Soft Magnetic Bilayer. Phys. Solid State 62, 954–958 (2020). https://doi.org/10.1134/S106378342006030X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342006030X

Keywords:

Navigation