Skip to main content
Log in

Melting and Electromigration in Thin Chromium Films

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Chromium films with a thickness of 10–40 nm deposited onto silicon substrates by magnetron sputtering are subjected to the action of electric current induced by the tip of an atomic force microscope (AFM) cantilever in air under regular environmental conditions. The melting process at the nanoscale, electric field-induced migration of material, and the chemical reaction of chromium oxidation that occur in melt craters formed around the region affected by the current are investigated using optical and scanning electron microscopies, AFM, and Raman spectroscopy. The flow of melted material induced by electric current is accompanied by the formation and motion of an array of spherical nanoparticles in the melt crater along its periphery. We propose that the formation of nanodrop array at relatively low current densities can be explained by the chromium oxidation reaction and the surface tension of melted material on the silicon substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Talukder, P. Kumar, and R. Pratap, IEEE Trans. Electron Dev. 60, 2877 (2013).

    Article  ADS  Google Scholar 

  2. S. Talukder, P. Kumar, and R. Pratap, Science (Washington, DC, U. S.) 108, 2167 (2015).

    Google Scholar 

  3. S. Kumar, P. Kumar, and R. Pratap, J. Phys. D 50, 39LT02 (2017).

  4. S. Krumbein, in Electromigration and Electronic Device Degradation, Ed. by A. Christou (Wiley, 1994).

    Google Scholar 

  5. Nanoscale Liquid Interfaces, Ed. by T. Ondar and J.  P. Aimé (CRC, Taylor and Francis Group, Boca Raton, 2013).

    Google Scholar 

  6. J. Cahn, J. Chem. Phys. 66, 3667 (1977).

    Article  ADS  Google Scholar 

  7. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).

    Article  ADS  Google Scholar 

  8. A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69, 931 (1997).

    Article  ADS  Google Scholar 

  9. P. E. L’vov, V. V. Svetukhin, S. V. Bulyarskii, and A. A. Pavlov, Phys. Solid State 61, 1872 (2019).

    Article  ADS  Google Scholar 

  10. J. Becker, G. Grün, R. Seemann, H. Mantz, Kh. Jacobs, K. R. Mecke, and R. Blossey, Nat. Mater. 2, 59 (2003).

    Article  ADS  Google Scholar 

  11. R. V. Craster and O. K. Matar, Rev. Mod. Phys. 81, 1131 (2009).

    Article  ADS  Google Scholar 

  12. X.-J. Cai, J. Genzer, and R. J. Spontak, Langmuir 30, 11689 (2014).

    Article  Google Scholar 

  13. M. Kalloudis, E. Glynos, S. Pispas, J. Walker, and V. Koutsos, Langmuir 29, 2339 (2013).

    Article  Google Scholar 

  14. J. E. Maslar, W. S. Hurst, T. A. Vanderah, and I. Levin, J. Raman Spectrosc. 32, 201 (2001).

    Article  ADS  Google Scholar 

  15. V. P. Maiboroda, A. P. Shpak, and Yu. A. Kunitskii, Usp. Fiz. Met. 4 (3), 123 (2003).

    Article  Google Scholar 

  16. M. M. Kolendovskii, S. I. Bogatyrenko, A. P. Kryshtal, and N. T. Gladkikh, Tech. Phys. 57, 849 (2012).

    Article  Google Scholar 

  17. S. V. Dukarov, O. P. Kryshal, and V. N. Sukhov, in Wetting and Wettability (InTech, Rijeka, 2015), p. 169.

    Google Scholar 

  18. S. Labus, A. Malecki, and R. Gajerski, J. Therm. Anal. Calorim. 74, 13 (2003).

    Article  Google Scholar 

  19. S. V. Dukarov, V. N. Sukhov, and I. G. Churilov, Vestn. KhNU, Ser. Fiz. 865 (12), 77 (2009).

    Google Scholar 

  20. S. von Gratowski, V. Koledov, V. Shavrov, S. Petrenko, A. Irzhak, A. Shelyakov, and R. Jede, in Frontiers in Materials Processing, Applications, Research and Technology (Springer, Singapore, 2018), p. 135.

    Google Scholar 

Download references

Funding

The part of study concerning phase transitions at the nanoscale was supported by the Russian Science Foundation (project no. 17-19-01748), and the electromigration study was supported in part from the funds of grants of the Department of Science and Technology, Indian Government (DSTO 1759), and in part by the Russian Foundation for Basic Research (project no. 17-57-45129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Koledov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Kumar, P., Irzhak, A.V. et al. Melting and Electromigration in Thin Chromium Films. Phys. Solid State 62, 988–992 (2020). https://doi.org/10.1134/S106378342006027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342006027X

Keywords:

Navigation