Skip to main content
Log in

Diffraction of a Plane Electromagnetic Wave by a VO2 Microsphere in the Phase Transition Region

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We present the results of diffraction studies and the electromagnetic (EM) field distribution in a microsphere of vanadium dioxide (VO2) before and after the metal–semiconductor phase transition (MSPT) is presented. As a result of the calculations, it has been shown that after the phase transition point in VO2 (T > Tc), the EM wave field practically does not pass into the microsphere, almost completely reflecting from it and scattering, which is associated with a sharp increase in the imaginary part of the dielectric constant of the microsphere, the VO2 transition into metallic state and commensurability of the EM wavelength with the radius of microsphere. Тhe radiation intensity has been found to decrease abruptly at a distance 2R from the surface of microsphere, which is associated with the interference of waves behind the microsphere (shadow region). The simulation of the diffraction and distribution of the EM field inside and outside microsphere allows us to propose a new method for studying phase transitions of the MSPT type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. V. Krasavin and N. I. Zheludev, Appl. Phys. Lett. 84, 1416 (2004).

    Article  ADS  Google Scholar 

  2. Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, Appl. Phys. Lett. 90, 011112 (2007).

    Article  ADS  Google Scholar 

  3. J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colasdes-Francs, E. Finot, J-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, Nano Lett. 9, 3914 (2009).

    Article  ADS  Google Scholar 

  4. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, Nano Lett. 16, 4391 (2016).

    Article  ADS  Google Scholar 

  5. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, Phys. Rev. Lett. 111, 215504 (2013).

    Article  ADS  Google Scholar 

  6. D. A. Kuzmin, I. V. Bychkov, and V. G. Shavrov, Opt Lett. 40, 2557 (2015).

    Article  ADS  Google Scholar 

  7. M. O. Usik, I. V. Bychkov, V. G. Shavrov, and D. A. Kuzmin, Open Mater. Sci. 5, 7 (2019).

    Google Scholar 

  8. G.-X. Ni, H.-Z. Yang, W. Ji, S.-J. Baeck, Ch.-T. Toh, J.-H. Ahn, V. M. Pereira, and B. Özyilmaz, Adv. Mater. 26, 1081 (2014).

    Article  Google Scholar 

  9. M. Oliva-Leyva, and G. G. Naumis, Phys. Rev. B 93, 035439 (2016).

    Article  ADS  Google Scholar 

  10. V. V. Temnov, G. Armelles, U. Woggon, D. V. Guzatov, A. Cebollada, A. Garcia-Martin, J-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Nat. Photon. 4, 107 (2010).

    Article  ADS  Google Scholar 

  11. V. V. Temnov, Nat. Photon. 6, 728 (2012).

    Article  ADS  Google Scholar 

  12. V. V. Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, and K. A. Nelson, J. Opt. 18, 093002 (2016).

    Article  ADS  Google Scholar 

  13. W. Zheng, A. T. Hanbicki, B. T. Jonker, and G. Lupke, Sci. Rep. 4, 6191 (2014).

    Article  ADS  Google Scholar 

  14. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, ACS Photon. 4, 1633 (2017).

  15. A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, Nat. Mater. 13, 862 (2014).

    Article  ADS  Google Scholar 

  16. Q. Wang, E. T. F. Rogers, B. Gholipour, C-M. Wang, G. Yuan, J. Tqng, and N. I. Zheludev, Nat. Photon. 10, 60 (2016).

    Article  ADS  Google Scholar 

  17. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, Nano Lett. 16, 1050 (2016).

    Article  ADS  Google Scholar 

  18. S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, Phys. Rev. B 82, 205425 (2010).

    Article  ADS  Google Scholar 

  19. C. Chen, R. Wang, L. Shang, and C. Guo, Appl. Phys. Lett. 93, 171101 (2008).

    Article  ADS  Google Scholar 

  20. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, Opt. Lett. 30, 558 (2005).

    Article  ADS  Google Scholar 

  21. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, Appl. Surf. Sci. 252, 5512 (2006).

    Article  ADS  Google Scholar 

  22. H. Guo, K. Chen, Y. Oh, and K. Wang, Nano Lett. 11, 3207 (2011).

    Article  ADS  Google Scholar 

  23. A. Cavalleri, Cs. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).

    Article  ADS  Google Scholar 

  24. A. B. Ilyinskiy, O. E. Kvashenkina, and E. B. Shadrin, Semiconductors 46, 422 (2012).

    Article  ADS  Google Scholar 

  25. G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000).

    ADS  Google Scholar 

  26. Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, IEEE Electron Dev. Lett. 34, 220 (2013).

    Article  ADS  Google Scholar 

  27. A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, D. S. Kalenov, M. P. Parkhomenko, S. V. von Gratowski, N. V. Shahmirzadi, T. Pakizeh, A. V. Irzhak, V. M. Serdyuk, J. A. Titovitsky, Iu. P. Novoselova, A. A. Komlev, A. E. Komlev, D. A. Kuzmin, and I. V. Bychkov, IEEE J. Electromagn., RF Microwaves Med. Biol. 3, 17 (2019).

    Google Scholar 

  28. D. O. Kikalov, V. P. Malinenko, A. L. Pergament, and G. B. Stefanovich, Tech. Phys. Lett. 25, 331 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (projects nos. 17-57-150001, 19-07-00246, 17-57-560002, 20-37-70038, and the Government of the Russian Federation (Resolution no. 211 of March 16, 2013), agreement no. 02. A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bychkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, I.V., Kuzmin, D.A., Tolkachev, V.A. et al. Diffraction of a Plane Electromagnetic Wave by a VO2 Microsphere in the Phase Transition Region. Phys. Solid State 62, 993–997 (2020). https://doi.org/10.1134/S1063783420060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060050

Keywords:

Navigation