Skip to main content
Log in

Elastocaloric Effect in a Rapidly Quenched Ti2NiCu Alloy at a Periodic Action of a Stretching Force at Frequencies to 50 Hz

  • MECHANICAL PROPERTIES, STRENGTH PHYSICS, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The elastocaloric effect (ECE) is studied in samples of rapidly quenched ribbons of a Ti2NiCu alloy at a periodic action by a mechanical stress to 300 MPa at a frequency to 50 Hz. ECE is maximal near the temperatures of a first-order thermoelastic martensitic phase transition. The ECE maximum is observed in a point corresponding to the completion of the reverse martensitic transition (T = 67.5°C) and is 21 and 6 K at cyclic mechanical loads of 300 and 100 MPa, respectively. The ECE value is shown to be independent of the frequency of the external loads in the range from 0 to 50 Hz. The specific power of a rapidly quenched ribbon as a thermal energy transformer is estimated at the external mechanical stress of 100 MPa; its value is 150 W/g at a frequency of 50 Hz and ECE is 6 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Sehitoglu, Y. Wu, and E. Ertekin, Scr. Mater. 148, 122 (2018).

    Article  Google Scholar 

  2. M. Zhou, Y. Li, C. Zhang, S. Li, E. Wu, W. Li, and L. Li, J. Phys. D 51, 135303 (2018).

    Article  ADS  Google Scholar 

  3. H. Ossmer, C. Chluba, S. Kauffmann-Weiss, E. Quandt, and M. Kohl, APL Mater. 4, 064102 (2016).

    Article  ADS  Google Scholar 

  4. C. Bechtold, C. Chluba, R. Lima de Miranda, and E. Quandt, Appl. Phys. Lett. 101, 091903 (2012).

    Article  ADS  Google Scholar 

  5. D. Cong, W. Xiong, A. Planes, Ya. Ren, L. Ma\({\tilde {t}}\)osa, P. Cao, Zh. Nie, X. Sun, Zh. Yang, X. Hong, and Ya. Wang, Phys. Rev. Lett. 122, 255703 (2019).

  6. L. Mañosa and A. Planes, Adv. Mater. 29, 1603607 (2017).

    Article  Google Scholar 

  7. Y. Li, D. Zhao, and J. Liu, Sci. Rep. 6, 25500 (2016).

    Article  ADS  Google Scholar 

  8. M. Schmidt, A. Schütze, and S. Seelecke, APL Mater. 4, 064107 (2016).

    Article  ADS  Google Scholar 

  9. Z. Xie, G. Sebald, and D. Guyomar, Phys. Lett. A 381, 2112 (2017).

    Article  ADS  Google Scholar 

  10. B. Lu and J. Liu, Sci. Rep. 7, 2084 (2017).

    Article  ADS  Google Scholar 

  11. S. I. Kareev, A. M. Glezer, and A. V. Shelyakov, Dokl. Phys. 52, 215 (2007).

    Article  ADS  Google Scholar 

  12. A. V. Irzhak, P. V. Lega, A. M. Zhikharev, V. V. Koledov, A. P. Orlov, D. S. Kuchin, N. Yu. Tabachkova, V. A. Dikan, A. V. Shelyakov, M. Yu. Berezin, V. G. Pushin, S. V. fon Gratovski, V. Ya. Pokrovskii, S. G. Zybtsev, and V. G. Shavrov, Dokl. Phys. 62, 5 (2017).

    Article  ADS  Google Scholar 

  13. P. Lega, V. Koledov, A. Orlov, D. Kuchin, A. Frolov, V. Shavrov, and V. Khovaylo, Adv. Eng. Mater. 19, 1700154 (2017).

    Article  Google Scholar 

  14. S. von Gratowski, V. Koledov, V. Shavrov, S. Petrenko, A. Irzhak, A. Shelyakov, and R. Jede, in Frontiers in Materials Processing, Applications, Research and Technology (Springer, Singapore, 2018), p. 135.

    Google Scholar 

  15. S. P. Belyaev, V. V. Istomin-Kastrovsky, V. V. Koledov, D. S. Kuchin, N. N. Resnina, N. Yu. Tabachkova, V. G. Shavrov, A. V. Shelyakov, and S. E. Ivanov, Bull. Russ. Acad. Sci.: Phys. 75, 1078 (2011).

    Article  Google Scholar 

Download references

Funding

This work was performed in the framework of state task to the Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences and supported in part by the Russian Foundation for Basic Research (project nos. 18-07-01320 and 18-37-0048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Morozov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, E.V., Fedotov, S.Y., Petrov, A.V. et al. Elastocaloric Effect in a Rapidly Quenched Ti2NiCu Alloy at a Periodic Action of a Stretching Force at Frequencies to 50 Hz. Phys. Solid State 62, 972–975 (2020). https://doi.org/10.1134/S1063783420060189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060189

Keywords:

Navigation