Skip to main content
Log in

Nonlocal Solitons in a Nonlinear Chain of Atoms

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A nonlinear 1D chain with nonlocal interaction has been considered. A nonlocal equation describing the propagation of envelope waves in the medium has been obtained using the multiscale decomposition method. The properties of the resulting equation have been studied and exact soliton-like solutions have been constructed using the Darboux transformation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. Lett. 110, 064105 (2013).

    Article  ADS  Google Scholar 

  2. M. J. Ablowitz and Z. H. Musslimani, Stud. Appl. Math. 139, 7 (2017).

    Article  MathSciNet  Google Scholar 

  3. D. Sinha and P. K. Ghosh, Phys. Rev. E 91, 042908 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. J. Ablowitz and Z. H. Musslimani, Phys. Rev. E 90, 032912 (2014).

    Article  ADS  Google Scholar 

  5. M. Li and T. Xu, Phys. Rev. E 91, 033202 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. J. Ablowitz and Z. H. Musslimani, Nonlinearity 29, 915 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. S. Fokas, Nonlinearity 29, 319 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. J.-L. Ji and Z.-N. Zhu, Commun. Nonlin. Sci. Numer. Simul. 42, 699 (2017).

    Article  Google Scholar 

  9. B. Yang and J. Yang, Stud. Appl. Math. 140, 178 (2018).

    Article  MathSciNet  Google Scholar 

  10. V. S. Gerdjikov and A. Saxena, J. Math. Phys. 58, 013502 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Stalin, M. Senthilvelan, and M. Lakshmanan, Phys. Lett. A 381, 2380 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

    Article  Google Scholar 

  14. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Opt. Lett. 32, 2632 (2007).

    Article  ADS  Google Scholar 

  15. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Nature (London, U.K.) 488, 167 (2012).

    Article  ADS  Google Scholar 

  16. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).

    Article  ADS  Google Scholar 

  17. C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002).

    Article  MathSciNet  Google Scholar 

  18. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).

    Article  ADS  Google Scholar 

  19. G. L. Giorgi, Phys. Rev. B 82, 052404 (2010).

    Article  ADS  Google Scholar 

  20. J. M. Lee, T. Kottos, and B. Shapiro, Phys. Rev. B 91, 094416 (2015).

    Article  ADS  Google Scholar 

  21. C. M. Bender and S. P. Klevansky, Phys. Rev. Lett. 105, 031601 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  22. C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 93, 251601 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. de Souza Dutra, V. G. C. S. dos Santos, and A. C. Amaro de Faria, Phys. Rev. D 75, 125001 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Phys. Rev. A 84, 040101 (2011).

    Article  ADS  Google Scholar 

  25. Z. Lin, J. Schindler, F. M. Ellis, and T. Kottos, Phys. Rev. A 85, 050101 (2012).

    Article  ADS  Google Scholar 

  26. T. A. Gadzhimuradov and A. M. Agalarov, Phys. Rev. A 93, 062124 (2016).

    Article  ADS  Google Scholar 

  27. S. Lou and F. Huang, Sci. Rep. 7, 869 (2017).

    Article  ADS  Google Scholar 

  28. X. Yan Tang, Z. Feng Liang, and X. Zhi Hao, Commun. Nonlinear Sci. Numer. Simul. 60, 62 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Toda, Theory of Nonlinear Lattices (Springer, New York, 2012), Vol. 20.

    MATH  Google Scholar 

  30. A. M. Kosevich and A. S. Kovalev, An Introduction to Nonlinear Physical Mechanics (Naukova Dumka, Kiev, 1989) [in Russian].

    MATH  Google Scholar 

  31. O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model: Concepts,Methods, and Applications (Springer, New York, 2013).

    MATH  Google Scholar 

  32. P. Rosenau, Phys. Lett. A 118, 222 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  33. V. Matveev and M. Salle, Darboux Transformations and Soliton (Springer, Berlin, 1991).

    Book  MATH  Google Scholar 

  34. N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).

    Article  ADS  Google Scholar 

  35. F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Phys. Rev. Lett. 109, 044102 (2012).

    Article  ADS  Google Scholar 

  36. A. A. Gelash, Phys. Rev. E 97, 022208 (2018).

    Article  ADS  Google Scholar 

  37. D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E 84, 056611 (2011).

    Article  ADS  Google Scholar 

  38. P. Dubard and V. B. Matveev, Nat. Hazard. Earth Syst. Sci. 11, 667 (2011).

    Article  ADS  Google Scholar 

  39. D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E 85, 066601 (2012).

    Article  ADS  Google Scholar 

  40. T. A. Gadzhimuradov, G. O. Abdullaev, and A. M. Aga-larov, Nonlin. Dyn. 89, 2695 (2017).

    Article  Google Scholar 

  41. Y.-Q. Yuan, B. Tian, L. Liu, Y. Sun, and Z. Du, Chaos, Solitons Fractals 107, 216 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  42. A. M. Agalarov, V. G. Zhulego, and T. A. Gadzhimuradov, Phys. Rev. E 91, 042909 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  43. H. J. Shin, J. Phys. A 37, 8017 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  44. R. Hirota and K. Suzuki, Proc. IEEE 61, 1483 (1973).

    Article  Google Scholar 

  45. P. Marquié, J. M. Bilbault, and M. Remoissenet, Phys. Rev. E 51, 6127 (1995).

    Article  ADS  Google Scholar 

  46. T. Kuusela, Phys. Lett. A 167, 54 (1992).

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gadzhimuradov.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzhimuradov, T.A., Agalarov, A.M. Nonlocal Solitons in a Nonlinear Chain of Atoms. Phys. Solid State 62, 982–987 (2020). https://doi.org/10.1134/S1063783420060074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060074

Keywords:

Navigation