Skip to main content
Log in

Thermal Stability of Carbinofullerenes C38, C62, and C64

  • FULLERENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal stability of recently predicted carbinofullerenes C38, C62, and C64 was examined using the molecular dynamics method. Their decomposition channels and temperature dependences of the lifetime were characterized. The activation energies and frequency factors in the Arrhenius law were determined. New isomers of carbinofullerenes C38 and C62, which are more thermally stable than the initial carbinofullerenes, were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature (London, U.K.) 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. V. I. Kasatochkin, A. M. Sladkov, Yu. P. Kudryavtsev, N. M. Popov, and V. V. Korshak, Dokl. Akad. Nauk SSSR 177, 358 (1967).

    Google Scholar 

  4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London, U.K.) 318, 162 (1985).

    Article  ADS  Google Scholar 

  5. D. Tománek and M. A. Schluter, Phys. Rev. Lett. 67, 2331 (1991).

    Article  ADS  Google Scholar 

  6. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B 47, 9878 (1993).

    Article  ADS  Google Scholar 

  7. R. O. Jones and G. Seifert, Phys. Rev. Lett. 79, 443 (1997).

    Article  ADS  Google Scholar 

  8. L. A. Openov and V. F. Elesin, JETP Lett. 68, 726 (1998).

    Article  ADS  Google Scholar 

  9. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London, U.K.) 347, 354 (1990).

    Article  ADS  Google Scholar 

  10. A. V. Eletskii and B. M. Smirnov, Phys. Usp. 38, 935 (1995).

    Article  ADS  Google Scholar 

  11. A. A. Farajian and M. Mikami, J. Phys.: Condens. Matter 13, 8049 (2001).

    ADS  Google Scholar 

  12. K. S. Grishakov, K. P. Katin, and M. M. Maslov, Diamond Rel. Mater. 84, 112 (2018).

    Article  ADS  Google Scholar 

  13. R. Ehlich, P. Landenberger, and H. Prinzbach, J. Chem. Phys. 115, 5830 (2001).

    Article  ADS  Google Scholar 

  14. T. Yildirim, P. M. Gehring, D. A. Neumann, P. E. Eaton, and T. Emrick, Phys. Rev. Lett. 78, 4938 (1997).

    Article  ADS  Google Scholar 

  15. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8, 152 (2014).

    Article  Google Scholar 

  16. K. P. Katin and M. M. Maslov, Adv. Condens. Matter Phys. 2015, 754873 (2015).

    Article  Google Scholar 

  17. E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53, 2385 (2011).

    Article  ADS  Google Scholar 

  18. A. I. Podlivaev and L. A. Openov, Phys. Solid State 61, 680 (2019).

    Article  ADS  Google Scholar 

  19. L. A. Openov and A. I. Podlivaev, Phys. Solid State 61, 2553 (2019).

    Article  ADS  Google Scholar 

  20. J.-Y. Yi and J. Bernholc, J. Chem. Phys. 96, 8634 (1992).

    Article  ADS  Google Scholar 

  21. R. L. Murry, D. L. Strout, G. K. Odom, and G. E. Scuseria, Nature (London, U.K.) 366, 665 (1993).

    Article  ADS  Google Scholar 

  22. R. L. Murry, D. L. Strout, and G. E. Scuseria, Int. J. Mass Spectrom. Ion Proc. 138, 113 (1994).

    Article  ADS  Google Scholar 

  23. B. R. Eggen, M. I. Heggie, and G. Jungnickel, Science (Washington, DC, U. S.) 272, 87 (1996).

    Article  ADS  Google Scholar 

  24. Y. Kumeda and D. J. Wales, Chem. Phys. Lett. 374, 125 (2003).

    Article  ADS  Google Scholar 

  25. H. F. Bettinger, B. I. Yakobsen, and G. E. Scuseria, J. Am. Chem. Soc. 125, 5572 (2003).

    Article  Google Scholar 

  26. I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 47, 778 (2005).

    Article  ADS  Google Scholar 

  27. A. I. Podlivaev and L. A. Openov, Phys. Solid State 61, 474 (2019).

    Article  ADS  Google Scholar 

  28. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  29. C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).

    Article  ADS  Google Scholar 

  30. J. Jellinek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).

    Article  ADS  Google Scholar 

  31. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  ADS  Google Scholar 

  32. J. V. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).

    Article  ADS  Google Scholar 

  33. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  34. K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).

    Article  ADS  Google Scholar 

  35. K. P. Katin, S. A. Shostachenko, A. I. Avhadieva, and M. M. Maslov, Adv. Phys. Chem. 2015, 506894 (2015).

    Article  Google Scholar 

  36. A. I. Podlivaev and L. A. Openov, Phys. Solid State 60, 162 (2018).

    Article  ADS  Google Scholar 

  37. L. A. Openov and A. I. Podlivaev, Phys. Solid State 60, 799 (2018).

    Article  ADS  Google Scholar 

  38. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    Article  ADS  Google Scholar 

  39. A. I. Podlivaev, JETP Lett. 110, 691 (2019).

    Article  ADS  Google Scholar 

  40. L. A. Openov and A. I. Podlivaev, Semiconductors 53, 717 (2019).

    Article  ADS  Google Scholar 

  41. I. Yu. Dolinskii, K. P. Katin, K. S. Grishakov, V. S. Prudkovskii, N. I. Kargin, and M. M. Maslov, Phys. Solid State 60, 821 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author wishes to thank the late L.A. Openov, with whom he started the work on carbinofullerenes.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-02-00278-а) and by the Ministry of Science and Higher Education of the Russian Federation as part of the Competitiveness Enhancement Program of the National Research Nuclear University MEPhI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I. Thermal Stability of Carbinofullerenes C38, C62, and C64. Phys. Solid State 62, 1109–1115 (2020). https://doi.org/10.1134/S1063783420060220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060220

Keywords:

Navigation