Skip to main content
Log in

An integro-differential equation for dynamical systems with diffusion-mediated coupling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many systems of biological interest can be modeled as pointlike oscillators whose coupling is mediated by the diffusion of some substance. This coupling occurs because the dynamics of each oscillator is influenced by the local concentration of a substance which diffuses through the spatial medium. The diffusion equation, on its hand, has a source term which depends on the oscillator dynamics. We derive a mathematical model for such a system and obtain an integro-differential equation. Its solution can be obtained by an approximation scheme for which the unperturbed solution is used to obtain a first-order solution to the coupled oscillators and so on. We present numerical results for the special case of a one-dimensional bounded domain in which the oscillators are randomly placed. Our results show the influence of the coupling parameters on some aspects of the dynamics of the coupled oscillators, like phase and frequency synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badii, R., Politi, A.: Complexity: Hierarchical Structures and Scaling in Physics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  2. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)

    Book  Google Scholar 

  3. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

    Article  Google Scholar 

  4. Sun, S., Li, R., Wang, L., Xia, C.: Reduced synchronizability of dynamical scale-free networks with onion-like topologies. Appl. Math. Comput. 252, 249 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Xia, C., Wang, L., Sun, S., Wang, J.: An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn. 69, 927 (2012)

    Article  MathSciNet  Google Scholar 

  6. Murray, J.D.: Mathematical Biology, vol. 2, 3rd edn. Springer, Berlin (2002)

    Book  Google Scholar 

  7. Welsh, D.K., Takahashi, J.S., Kay, S.A.: Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551 (2010)

    Article  Google Scholar 

  8. Gonze, D., Bernard, S., Waltermann, C., Kramer, A., Herzel, H.: Spontaneous synchronization of coupled circadian oscillators. Biophys. J. 89, 120 (2005)

    Article  Google Scholar 

  9. Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., Okamura, H.: Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408 (2003)

    Article  Google Scholar 

  10. Albus, H., Vansteensel, M.J., Michel, S., Block, G.D., Meijer, J.H.: A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886 (2005)

    Article  Google Scholar 

  11. Park, E.-H., Feng, Z., Durand, D.M.: Diffusive coupling and network periodicity: a computational study. Biophys. J. 95, 1126 (2008)

    Article  Google Scholar 

  12. Durand, D. M., Park, E.-H.: Diffusive coupling can induce synchronized periodic activity in neural networks. In: Proceedings of 30th Annual International IEEE EMBS Conference (Vancouver, British Columbia, Canada, August 20–24), pp. 3677–3678 (2008)

  13. Liu, H.-Y., Lin, C.-C.: A diffusion–reaction model for predicting enzyme-mediated dynamic hydrogel stiffening. Gels 5, 17 (2019)

    Article  Google Scholar 

  14. Tsuji, K., Müller, S.C.: Chemical reaction evolving on a droplet. J. Phys. Chem. Lett. 3, 977 (2012)

    Article  Google Scholar 

  15. Guardingo, M., Busquéb, F., Ruiz-Molina, D.: Reactions in ultra-small droplets by tip-assisted chemistry. Chem. Commun. 52, 11607 (2016)

    Article  Google Scholar 

  16. Gu, C., Tang, M., Yang, H.: The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods. Sci. Rep. 6, 28878 (2016)

    Article  Google Scholar 

  17. Kuramoto, Y.: Scaling behavior of turbulent oscillators with non-local interaction. Prog. Theor. Phys. 94, 321–330 (1995)

    Article  Google Scholar 

  18. Kuramoto, Y., Nakao, H.: Origin of power-law spatial correlations in distributed oscillators and maps with nonlocal coupling. Phys. Rev. Lett. 76, 4352 (1996)

    Article  Google Scholar 

  19. Nakao, H.: Anomalous spatio-temporal chaos in a two-dimensional system of non-locally coupled oscillators. Chaos 9, 902 (1999)

    Article  Google Scholar 

  20. Kuramoto, Y., Nakao, H.: Power-law spatial correlations and the onset of individual motions in self-oscillatory media with non-local coupling. Physica D 103, 294–313 (1997)

    Article  Google Scholar 

  21. Battogtokh, D.: Pattern formation in nonlocally coupled oscillators. Prog. Theor. Phys. 102, 947 (1999)

    Article  Google Scholar 

  22. Kawamura, Y., Nakao, N., Kuramoto, Y.: Noise-induced turbulence in nonlocally coupled oscillators. Phys. Rev. E 75, 036209 (2007)

    Article  MathSciNet  Google Scholar 

  23. Battogtokh, D.: Phase turbulence in the nonlocally coupled phase equation. Phys. Lett. A 299, 558 (2002)

    Article  Google Scholar 

  24. Silva, F.A.S., Lopes, S.R., Viana, R.L.: Synchronization of biological clock cells with a coupling mediated by the local concentration of a diffusing substance. Commun. Nonlinear Sci. Numer. Simul. 35, 37–52 (2016)

    Article  MathSciNet  Google Scholar 

  25. Viana, R.L., Batista, A.M., Batista, C.A.S., de Pontes, J.C.A., Silva, F.A.S., Lopes, S.R.: Bursting synchronization in networks with long-range coupling mediated by a diffusing chemical substance. Commun. Nonlinear Sci. Numer. Simul. 17, 2924–2942 (2012)

    Article  MathSciNet  Google Scholar 

  26. Viana, R.L., Batista, A.M., Batista, C.A.S., Iarosz, K.C.: Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance. Nonlin. Dyn. 87, 1589 (2017)

    Article  Google Scholar 

  27. McClintock, M.K.: Synchronizing ovarian and birth cycles by female pheromones. In: Müller-Schwarze, D., Silverstein, R.M. (eds.) Chemical Signals in Vertebrates 3. Springer, Boston (1983)

    Google Scholar 

  28. Yang, Z., Schank, J.C.: Women do not synchronize their menstrual cycles. Hum. Nat. 17, 433 (2006)

    Article  Google Scholar 

  29. Ziomkiewicz, A.: Menstrual synchrony: fact or artifact? Hum. Nat. 17, 419 (2006)

    Article  Google Scholar 

  30. Batista, C.A.S., Szezech Jr., J.D., Batista, A.M., Macau, E.E.N., Viana, R.L.: Synchronization of phase oscillators with coupling mediated by a diffusing substance. Phys. A 470, 236 (2017)

    Article  MathSciNet  Google Scholar 

  31. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    Google Scholar 

  32. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia (2007)

    Google Scholar 

  33. Newton, R.G.: Scattering Theory of Waves and Particles. Dover, New York (2002)

    MATH  Google Scholar 

  34. Duffy, D.G.: Green’s Functions with Applications. Chapman & Hall/CRC, London (2001)

    Book  Google Scholar 

  35. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Motion. Springer, Berlin (1992)

    Book  Google Scholar 

  36. Eisenbach, M.: Encyclopedia of life sciences. In: Bacterial Chemotaxis. Wiley, Chichester (2011)

  37. Sourjik, V., Wingreen, N.S.: Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol. 24, 262 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Brazilian Government Agencies CNPq (proc. 301019/2019-3) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Viana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Fast diffusion limit of the interaction kernels

Appendix: Fast diffusion limit of the interaction kernels

It is instructive to verify that the Green functions we have obtained for the diffusion process reduce to the expressions already obtained by Kuramoto and coworkers in the case of very fast diffusion, for which the concentration of the chemical mediator achieves immediately its stationary state.

From the Green function of the specific geometry in which the system is defined, the corresponding interaction kernel is

$$\begin{aligned} \sigma (\mathbf{r}_j,\mathbf{r}_k;t) = \int _0^{t} \mathrm{d}t' \, G\left( \mathbf{r}_j,t;\mathbf{r}_k,t'\right) . \end{aligned}$$
(38)

Using the Green’s function of the \(d=1\)-dimensional case in free space given by (10), the interaction kernel reads

$$\begin{aligned} \sigma (x_j,x_k;t)\,&=\, {} \int _0^{t} \mathrm{d}t' \frac{\mathrm{e}^{-\eta (t-t')}}{\sqrt{4\pi D(t-t')}} \exp \nonumber \\&\quad\left[-\frac{{(x_j-x_k)}^2}{4D(t-t')}\right], \end{aligned}$$
(39)

which, after a change of variables, reads

$$\begin{aligned} \sigma (x_j,x_k;t) = \frac{x_j-x_k}{4D\sqrt{\pi }} \int _{u_1}^\infty \frac{\mathrm{d}u}{u^{3/2}} \, \exp \left( -u-\frac{a_1}{u}\right) , \end{aligned}$$
(40)

where

$$\begin{aligned} a_1\,=\, & {} \frac{\eta {(x_j-x_k)}^2}{4D} = {\left\{ \frac{\gamma (x_j-x_k)}{2}\right\} }^2, \nonumber \\ u_1\,=\, & {} \frac{{(x_j-x_k)}^2}{4Dt}, \end{aligned}$$
(41)

and we have defined a coupling length

$$\begin{aligned} \gamma = \sqrt{\frac{\eta }{D}}. \end{aligned}$$
(42)

In fast diffusion case is equivalent to take the \(t\rightarrow \infty \) limit for the interaction kernel, for which \(u_1\rightarrow 0\). Taking this limit we have

$$\begin{aligned} \sigma (x_j,x_k)\,=\, & {} \lim _{t\rightarrow \infty } \sigma (x_j,x_k;t)\nonumber \\\,=\, & {} \frac{\gamma }{2\eta } \, \exp \left\{ -\gamma (x_j-x_k)\right\} , \end{aligned}$$
(43)

which coincides with the earlier results of Kuramoto and coworkers [17, 19], in their analysis of the fast-relaxation case.

For the two-dimensional case (\(d=2\)) in free space, we use the Green function (11), and the interaction kernel becomes

$$\begin{aligned} \sigma ({\mathbf {r}}_j,{\mathbf {r}}_k;t) = \frac{1}{4\pi D} \int _{u_1}^\infty \frac{\mathrm{d}u}{u} \, \exp \left( -u-\frac{a_2}{u}\right) , \end{aligned}$$
(44)

where

$$\begin{aligned} a_2\,=\, & {} \frac{\eta [{(x_j-x_k)}^2+{(y_j-y_k)}^2]}{4D} = {\left| \frac{\gamma ({\mathbf {r}}_j-{\mathbf {r}}_k)}{2}\right| }^2, \nonumber \\ u_1\,=\, & {} \frac{{\vert {\mathbf {r}}_j-{\mathbf {r}}_k \vert }^2}{4Dt}, \end{aligned}$$
(45)

which, in the \(t\rightarrow \infty \) limit, reduces to the result already found by Nakao [19]:

$$\begin{aligned} \sigma ({\mathbf {r}}_j,{\mathbf {r}}_k) = \lim _{t\rightarrow \infty } \sigma ({\mathbf {r}}_j,{\mathbf {r}}_k;t) = \frac{1}{2\pi D} \, K_0 \left( \gamma \vert {\mathbf {r}}-{\mathbf {r}}_k \vert \right) , \end{aligned}$$
(46)

where \(K_0\) is the modified Bessel function of the second kind and zeroth order.

Finally, for the three-dimensional free-space case (\(d=3\)) we use the Green function (11) to obtain the corresponding the interaction kernel

$$\begin{aligned}\sigma ({\mathbf {r}}_j,{\mathbf {r}}_k;t) &= - \frac{1}{4D \pi ^{3/2}} \frac{1}{{|{\mathbf {r}}_j-{\mathbf {r}}_k|}} \nonumber \\&\quad \times\int _{u_1}^\infty \frac{\mathrm{d}u}{\sqrt{u}} \exp \left( -u-\frac{a_3}{u}\right) , \end{aligned}$$
(47)

where

$$\begin{aligned} a_3 = \frac{\eta }{4D} {\vert {\mathbf {r}}_j-{\mathbf {r}}_k\vert }^2, \qquad u_1 = \frac{{\vert {\mathbf {r}}_j-{\mathbf {r}}_k \vert }^2}{4Dt}, \end{aligned}$$
(48)

which, in the limit \(t\rightarrow \infty \), becomes

$$\begin{aligned} \sigma ({\mathbf {r}}_j,{\mathbf {r}}_k) &=& {} \lim _{t\rightarrow \infty } \sigma ({\mathbf {r}}_j,{\mathbf {r}}_k;t) \nonumber \\ & = \frac{1}{4D\pi } \frac{1}{\vert {\mathbf {r}}_j-{\mathbf {r}}_k\vert } \exp \left( -\gamma \vert {\mathbf {r}}_j-{\mathbf {r}}_k\vert \right) , \end{aligned}$$
(49)

in accordance with the result previously found by Nakao [19].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristides, R.P., Viana, R.L. An integro-differential equation for dynamical systems with diffusion-mediated coupling. Nonlinear Dyn 100, 3759–3770 (2020). https://doi.org/10.1007/s11071-020-05700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05700-9

Keywords

Mathematics Subject Classification

Navigation