Skip to main content
Log in

RETRACTED ARTICLE: Cloning and characterization of TaPUB4, a U-box gene from common wheat (Triticum aestivum L.) involved in regulation of pollen development by influencing sucrose-starch pathway in anther

  • Published:
Molecular Breeding Aims and scope Submit manuscript

This article was retracted on 17 October 2020

This article has been updated

Abstract

Development of functional pollen grains in plants is regulated through complex genetic networks and environmental clues. The ubiquitin-26S proteasome system is important in the post-translational modification of intracellular proteins, and the system includes the ubiquitin activating (E1), ubiquitin conjugating (E2), and ubiquitin ligase (E3) enzymes. Here, a novel plant U-box-containing cDNA was isolated in anther from common wheat (Triticum aestivum) and designed as TaPUB4. The cDNA encoding comprised 2598 bp, with an open reading frame of 865 amino acids. The deduced amino acid sequence of TaPUB4 showed 41.2–92.3% identity with other plant U-box homologous genes. Self-ubiquitination assay indicated that the bacterially expressed TaPUB4 protein had E3 ligase activity, and subcellular localization results showed that TaPUB4 was located in the nucleus and cytoplasm in onion epidermal cells. Overexpression of TaPUB4 gene in Arabidopsis atpub4 mutant restored partially the fertility of the mutant, increased the number of pollens in anthers, enhanced pollen viability, and displayed normal degradation of tapetum as anther development. The expression levels of genes related to starch deposition also changed greatly in the anthers of transgenic lines. These results support the notion that as a homolog of AtPUB4, TaPUB4 might control male fertility by regulating sucrose-starch metabolism in pollen grains, and this process may be accomplished through ubiquitin-proteasome system. The development and utilization of TaPUB4 as a functional molecular marker may be helpful for improving its fertility in wheat breeding programs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 17 October 2020

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s11032-020-01181-1.

Abbreviations

ARM:

Armadillo repeats

CaMV:

35S cauliflower mosaic virus promoter

GFP:

Green fluorescent protein

GST:

Glutathione S-transferase

PUB:

Plant U-box

qRT-PCR:

Quantitative real-time PCR

RACE:

Rapid amplification of cDNA ends

RING:

Really interesting new gene

E3:

Ubiquitin ligase

UPS:

Ubiquitin/26S proteasome systems

WT:

Wild type

References

  • Abdel-Ghani AH, Frey FP, Parzies HK (2013) Effect of temperature on the expression of cytoplasmic male sterility in cultivated barley (Hordeumvulgare L.). Plant Breed 132(1):42–47

    Google Scholar 

  • Azevedo C, João Santos-Rosa M, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6(8):354–358

    CAS  PubMed  Google Scholar 

  • Bae H, Kim WT (2014) Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem Biophys Res Commun 444(4):575–580

    CAS  PubMed  Google Scholar 

  • Bagge M, Lubberstedt T (2008) Functional markers in wheat: technical and economic aspects. Mol Breed 22:319–328

    Google Scholar 

  • Bergler J, Hoth S (2011) Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol 13(5):725–730

    CAS  PubMed  Google Scholar 

  • Bidisha C, Aggarwal PK, Singh SD, Nagarajan S, Pathak H (2010) Impact of high temperature on pollen germination and spikelet sterility in rice: comparison between basmati and non-basmati varieties. Crop Pasture Sci 61(5):363–368

    Google Scholar 

  • Campos L, Rivas S, Irene S (2018) Roles of E3 ubiquitin-ligases in nuclear protein homeostasis during plant stress responses. Front Plant Sci 9:1–7

    Google Scholar 

  • Chen T, Lin J, Ling Y, Zhang C, Bressan RA, HaoH LP, Hasegawa PM (2012) Mutation in SUMO E3 ligase, SIZ1, disrupts the mature female gametophyte in Arabidopsis. PLoS One 7(1):e29470

    PubMed  PubMed Central  Google Scholar 

  • Cho SK, Chung HS, Ryu MY, Park MJ, Lee MM, Bahk YY, Kim J, Pai HS, Kim WT (2006) Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-box E3 ubiquitin ligase homolog. Plant Physiol 142(4):1664–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    CAS  PubMed  Google Scholar 

  • Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A (2009) E3 ubiquitin ligases and plant innate immunity. J Exp Bot 60(4):1123–1132

    CAS  PubMed  Google Scholar 

  • Drechsel G, Bergler J, Wippel K, Sauer N, VogelmannK HS (2011) C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. J Exp Bot 62(2):775–785

    CAS  PubMed  Google Scholar 

  • Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci U S A 113(52):15144–15149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X (2017) TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta 246:1153–1163

    CAS  PubMed  Google Scholar 

  • Gomez JF, Talle B, Wilson AZ (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol l57:876–891

    Google Scholar 

  • Griet DH, Satoko Y, Meritxell AL, Martina KR, Martin P (2012) Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection. Plant Cell 24(4):1691–1707

    Google Scholar 

  • Han PL, Dong YH, Gu KD, Yu JQ, Hu DG, Hao YJ (2019) The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea. Planta 249(4):1177–1188

    CAS  PubMed  Google Scholar 

  • Heilmann I, Ischebeck T (2016) Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reprod 29(1/2):3–20

    CAS  PubMed  Google Scholar 

  • Hur YJ, Yi YB, Lee JH, Chung YS, Jung HW, Yun DJ, Kim KM, Park DS, Kim DH (2012) Molecular cloning and characterization of OsUPS, a U-box containing E3 ligase gene that respond to phosphate starvation in rice (Oryza sativa). Mol Biol Rep 39(5):5883–5888

    CAS  PubMed  Google Scholar 

  • Jiao L, Zhang Y, Lu J (2017) Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera ‘Thompson seedless’. Plant Physiol Biochem 112:53–63

    CAS  PubMed  Google Scholar 

  • Jung C, Zhao P, Seo J, MitsudaN DS, Chua NH (2015) PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell 27(7):2016–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C (2007) A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci 93(6):770–772

    CAS  Google Scholar 

  • Kay P, Groszmann M, Ross JJ, Parish RW, Swain SM (2013) Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. New Phytol 197(1):73–87

    CAS  PubMed  Google Scholar 

  • Kinoshita A, Seo M, Kamiya Y, Sawa S (2015a) Mystery in genetics: PUB4 gives a clue to the complex mechanism of CLV signaling pathway in the shoot apical meristem. Plant Signal Behav 10(6):e1028707/1–e1028707/3

    CAS  Google Scholar 

  • Kinoshita A, ten Hove CA, Tabata R, Yamada M, Shimizu N, Ishida T, Yamaguchi K, Shigenobu S (2015b) A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem. Development 142(3):444–453

    CAS  PubMed  Google Scholar 

  • Kitashiba H, Liu P, Nishio T, Nasrallah JB, Nasrallah ME (2011) Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108(44):18173–18178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong J, Li Z, Tan YP, Wan CX, Li SQ, Zhu YG (2007) Different gene expression patterns of sucrose-starch metabolism during pollen maturation in cytoplasmic male-sterile and male-fertile lines of rice. Physiol Plant 130(1):136–147

    CAS  Google Scholar 

  • Kour R, Samnotra RK, Sharma M, Bandral RS, Sharma A, Sarkar K, Spaldon S (2016) Male sterility in vegetable hybrid seed production. Ecol Environ Conserv 22(2):781–785

    Google Scholar 

  • Lee KJ, Kim DI, Kim KS, Lee BW (2014) Genotypic difference in spikelet sterility response to air temperature during the reproductive stage of rice. J Crop Sci Biotechnol 17(2):53–57

    Google Scholar 

  • Lee S, EomJS HSK, Shin D, AnG OT, Jeon JS (2016) Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot 67(18):5557–5569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CT, Chou IM, Cheng CH, Chen HM, Young GH, Chang SC, Chen AN, Juang RH, Chen CP, Lin YC (2012) Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20s proteasome. PLoS One 7(4):e35036

    Google Scholar 

  • Liu C, Li X, Qian W, Qian Y, Giltiay NV, Lu Y, Saurav M, Swaidani S, Deng L, Chen ZJ (2009) Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal 2(92):1–9

    Google Scholar 

  • Liu C, van Dyk D, Choe V, Yan J, Majumder S, Costanzo M, Bao X, Boone C, Huo K, Winey M, Fisk H, Andrews B, Rao H (2011a) Ubiquitin ligase Ufd2 is required for efficient degradation of Mps1 kinase. J Biol Chem 286(51):43660–43667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YC, Wu YR, Huang XH, Sun J, Xie Q (2011b) AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant 4(6):938–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Shi S, Zhang S, Xu P, Lai J, Liu Y, Yuan D, Wang Y, Du J, Yang C (2014) SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant Biol 14:153

    PubMed  PubMed Central  Google Scholar 

  • McKinney EC, Ali N, Traut A, Feldmann KA, Belostotsky DA, McDowell JM, Meagher RB (1995) Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2-1 and act4-1. Plant J 8(4):613–622

    CAS  PubMed  Google Scholar 

  • Mu H, KeJH LW, Zhuang CX, Yip WK (2009) UDP-glucose pyrophosphorylase2 (OsUgp2), a pollen-preferential gene in rice, plays a critical role in starch accumulation during pollen maturation. Chin Sci Bull 54(2):234–243

    CAS  Google Scholar 

  • Nashilevitz S, Melamed-Bessudo C, Aharoni A, Kossmann J, Wolf S, Levy AA (2009) The legwd mutant uncovers the role of starch phosphorylation in pollen development and germination in tomato. Plant J 57(1):13

    Google Scholar 

  • O’brien T, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Google Scholar 

  • Paul NK, Sikder S (2010) Effects of post-anthesis heat stress on stem reserves mobilization, canopy temperature depression and floret sterility of wheat cultivars. Bangladesh J Bot 39(1):51–55

    Google Scholar 

  • Peng YJ, Shih CF, Yang JY, Tan CM, Hsu WH, Huang YP, Liao PC, Yang CH (2013) A RING-type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene defective in anther dehiscence1 in Arabidopsis. Plant J 74(2):310–327

    CAS  PubMed  Google Scholar 

  • Qu LJ, Luo G, Gu HY, Liu J (2012) Four closely-related RING-type E3 ligases, APD1-4, are involved in pollen mitosis II regulation in Arabidopsis. J Integr Plant Biol 54:814–827

    PubMed  Google Scholar 

  • Raman V, Budel JM, Zhao J, Bae JY, Avula B, Osman AG, Ali Z, Khan IA (2018) Microscopic characterization and HPTLC of the leaves, stems and roots of Fadogia agrestis – an African folk medicinal plant. Rev Bras 28:631–639

    CAS  Google Scholar 

  • Sakamoto T, Kitano H, Fujioka S (2013) An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice. Plant Signal Behav 8(11):e27117-:1

    Google Scholar 

  • Saminathan T, Guo CL, Chuang MH, Lai MH, Chen J, Jauh GY (2011) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol 189(3):869–882

    Google Scholar 

  • Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR (2008) Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol 147(4):2084–2095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61(6):1029–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, Hofmann K, Thumm M, Wolf DH (2008) The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol Biol Cell 19(8):3323–3333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil A, Kalaran MK, Chandra Babu R (2004) Physiological and biochemical changes associated with temperature induced genic male sterility in rice (Oryza sativa L.). J Plant Biol 31(1):37–44

    CAS  Google Scholar 

  • Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT (2012) Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol 160(1):556–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Pandey A, Pandey GK (2013) Role of plant U-BOX (PUB) protein in stress and development. Plant Stress 7:1–9

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo M (2018) News from the PUB: plant U-box type E3 ubiquitin ligases. J Exp Bot 69(3):371–384

    CAS  PubMed  Google Scholar 

  • Venkata R, Reddy P (2014) Hybrid and varietal genetic purity testing methods for crop improvement. Int J Appl Biol Pharm Technol 5(4):197–199

    Google Scholar 

  • Visscher AM, Belfield EJ, Vlad D, Irani N, Moore I, Harberd NP (2015) Overexpressing the multiple-stress responsive gene At1g74450 reduces plant height and male fertility in Arabidopsis thaliana. PLoS One 10(10):e0140368

    PubMed  PubMed Central  Google Scholar 

  • Wang GL, Nahm BH, Qu SH, Xie Q, Yang CW, Leung H, Zeng LR, Baraoidan M, Bordeos A, Yan HY (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16(10):2795–2808

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Lu Y, Jiang T, Berg H, Li C, Xia Y (2013) The Arabidopsis U–box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. Plant J 74:511–523

    CAS  PubMed  Google Scholar 

  • Wang N, Liu Y, Cong Y, Wang T, Zhong X, Yang S, Li Y, Gai J (2016a) Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol 57(6):1189–1209

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Lin Y, Wu P, Zhang WD, Gao Q, Zhang K, Zhao R (2016b) Comparative proteomics analysis of anther proteins between Ven cytoplasmic male sterile and fertile plants on the early stages of pollen development in wheat. Acta Botan Boreali-Occiden Sin 36(6):1135–1145

    Google Scholar 

  • Wang J, Liu S, Liu H, Chen K, Zhang P (2019) PnSAG1, an E3 ubiquitin ligase of the Antarctic moss Pohlianutans, enhanced sensitivity to salt stress and ABA. Plant Physiol Biochem 141:343–352

    CAS  PubMed  Google Scholar 

  • Wei B, Jing R, Wang C, Chen J, Mao X, Chang X, Jia J (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breed 23:13–22

    CAS  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64(18):5411–5428

    CAS  PubMed  Google Scholar 

  • Wise PR, Pring RD (2012) Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: light at the end of the tunnel? Proc Natl Acad Sci U S A 99(16):10240–10242

    Google Scholar 

  • Yuan G, Wang Y, Yuan S, Wang P, Duan W, Bai J, Sun H, Wang N, Zhang F, Zhang L, Zhao C (2018) Plant BreedTaPaO1 gene conferring pollen sterility under low temperature. J Plant Biol 61(1):25–32

    CAS  Google Scholar 

  • Zhang N, Yin Y, Liu X, Tong S, Xing J, Zhang Y, Pudake RN, Miranda IE, Peng H, Xin M, Hu Z, Ni Z, Sun Q, Yao Y (2017) The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins. Plant Physiol 175(4):1878–1892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yao Y, Chen S, Hou J, Yu Y, Liu T, Du J, Song B, Xie C (2019) SbRFP1 regulates cold-induced sweetening of potato tubers by inactivation of StBAM1. Plant Physiol Biochem 136:215–221

    CAS  PubMed  Google Scholar 

  • Zhao QZ, TianMM LQL, Cui F, Liu LJ, Yin BJ, Xie Q (2013) A plant-specific in vitro ubiquitination analysis system. Plant J 74(3):524–533

    CAS  PubMed  Google Scholar 

  • Zhou J, Lu D, Xu G, Finlayson SA, He P, Shan L (2015) The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. J Exp Bot 66(11):3353–3366

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from Creation and Application of Strong Heterosis of Hybrid Wheat in Huanghuai Wheat Region (2016YFD0101602) subjected to National Key Research & Development Program (China) “Seven Crops Breeding”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingrong Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 29 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, L., Wang, Y. et al. RETRACTED ARTICLE: Cloning and characterization of TaPUB4, a U-box gene from common wheat (Triticum aestivum L.) involved in regulation of pollen development by influencing sucrose-starch pathway in anther. Mol Breeding 40, 56 (2020). https://doi.org/10.1007/s11032-020-01138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01138-4

Keywords

Navigation