Skip to main content

Advertisement

Log in

The effect of KIR and HLA polymorphisms on dengue infection and disease severity in northeastern Thais

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Killer cell immunoglobulin-like receptors (KIRs) are cell surface receptors on natural killer (NK) cells and subsets of T cells. The interaction between KIRs and their cognate ligands (Human leukocyte antigen class I molecules, HLA class I) modulates the immune response of NK cells, in particular through clearance of virus-infected cells. Here, we investigated the effect of KIRs and HLA ligands on dengue infections and disease severity. The KIRs and HLA ligands were identified in 235 healthy controls (HC) and 253 dengue patients (DEN) using polymerase chain reaction with sequence specific primer (PCR–SSP); moreover, DEN was classified to 100 dengue fever (DF) and 153 dengue haemorrhagic fever (DHF). Risks were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at a two-tailed P value of < 0.05. The Bonferroni correction was applied for multiple comparisons. Twelve significant associations were observed in dengue infections and disease severity; however, two outcomes survived after the Bonferroni correction. Of these, HLA-A11 was associated with an increased risk to develop dengue disease (OR 2.41, 95% CI 1.62–3.60, Pc = 0.004), while KIR3DS1+ Bw4 was a protective genotype to developing DHF (OR 0.28, 95% CI 0.16–0.48, Pc < 0.001). This study revealed an important role of KIR and HLA ligands in innate immune responses to dengue viral infections and, in particular, their effect on clinical outcomes and disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. WHO (2020) Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

  2. Anoop M, Mathew AJ, Jayakumar B, Issac A, Nair S, Abraham R, Anupriya MG, Sreekumar E (2012) Complete genome sequencing and evolutionary analysis of dengue virus serotype 1 isolates from an outbreak in Kerala, South India. Virus Genes 45(1):1–13. https://doi.org/10.1007/s11262-012-0756-3

    Article  CAS  PubMed  Google Scholar 

  3. Holmes EC, Twiddy SS (2003) The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3(1):19–28

    Article  PubMed  Google Scholar 

  4. Blanton RE, Silva LK, Morato VG, Parrado AR, Dias JP, Melo PR, Reis EA, Goddard KA, Nunes MR, Rodrigues SG, Vasconcelos PF, Castro JM, Reis MG, Barreto ML, Teixeira MG (2008) Genetic ancestry and income are associated with dengue hemorrhagic fever in a highly admixed population. Eur J Hum Genet 16(6):762–765. https://doi.org/10.1038/ejhg.2008.4

    Article  CAS  PubMed  Google Scholar 

  5. de la Sierra BD, Garcia G, Perez AB, Morier L, Alvarez M, Kouri G, Guzman MG (2006) Ethnicity and difference in dengue virus-specific memory T cell responses in Cuban individuals. Viral Immunol 19(4):662–668. https://doi.org/10.1089/vim.2006.19.662

    Article  CAS  Google Scholar 

  6. Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K, Sun W, Kanesa-Thasan N, Hayes CG, Watts DM (2001) Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg 65(3):180–183

    Article  CAS  PubMed  Google Scholar 

  7. Alagarasu K, Honap T, Damle IM, Mulay AP, Shah PS, Cecilia D (2013) Polymorphisms in the oligoadenylate synthetase gene cluster and its association with clinical outcomes of dengue virus infection. Infect Genet Evol 14:390–395. https://doi.org/10.1016/j.meegid.2012.12.021

    Article  CAS  PubMed  Google Scholar 

  8. Alagarasu K, Mulay AP, Singh R, Gavade VB, Shah PS, Cecilia D (2013) Association of HLA-DRB1 and TNF genotypes with dengue hemorrhagic fever. Hum Immunol 74(5):610–617. https://doi.org/10.1016/j.humimm.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  9. Sakuntabhai A, Turbpaiboon C, Casademont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K, Tangthawornchaikul N, Vasanawathana S, Chaiyaratana W, Yenchitsomanus PT, Suriyaphol P, Avirutnan P, Chokephaibulkit K, Matsuda F, Yoksan S, Jacob Y, Lathrop GM, Malasit P, Despres P, Julier C (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37(5):507–513. https://doi.org/10.1038/ng1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hottz ED, Oliveira MF, Nunes PC, Nogueira RM, Valls-de-Souza R, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza PT, Bozza FA (2013) Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 11(5):951–962. https://doi.org/10.1111/jth.12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453(7195):672–676. https://doi.org/10.1038/nature07013

    Article  CAS  PubMed  Google Scholar 

  12. Shilling HG, Young N, Guethlein LA, Cheng NW, Gardiner CM, Tyan D, Parham P (2002) Genetic control of human NK cell repertoire. J Immunol 169(1):239–247

    Article  CAS  PubMed  Google Scholar 

  13. Toneva M, Lepage V, Lafay G, Dulphy N, Busson M, Lester S, Vu-Trien A, Michaylova A, Naumova E, McCluskey J, Charron D (2001) Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens 57(4):358–362

    Article  CAS  PubMed  Google Scholar 

  14. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7(6):753–763

    Article  CAS  PubMed  Google Scholar 

  15. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274. https://doi.org/10.1146/annurev.immunol.23.021704.115526

    Article  CAS  PubMed  Google Scholar 

  16. Williams AP, Bateman AR, Khakoo SI (2005) Hanging in the balance. KIR and their role in disease. Mol Interv 5(4):226–240

    Article  CAS  PubMed  Google Scholar 

  17. Bashirova AA, Martin MP, McVicar DW, Carrington M (2006) The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet 7:277–300. https://doi.org/10.1146/annurev.genom.7.080505.115726

    Article  CAS  PubMed  Google Scholar 

  18. Kulkarni S, Martin MP, Carrington M (2008) The Yin and Yang of HLA and KIR in human disease. Semin Immunol 20(6):343–352. https://doi.org/10.1016/j.smim.2008.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M (2002) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169(6):2818–2822

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki Y, Hamamoto Y, Ogasawara Y, Ishikawa K, Yoshikawa Y, Sasazuki T, Muto M (2004) Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J Invest Dermatol 122(5):1133–1136. https://doi.org/10.1111/j.0022-202x.2004.22517.x

    Article  CAS  PubMed  Google Scholar 

  21. Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 173(7):4273–4276

    Article  CAS  PubMed  Google Scholar 

  22. Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50(5):1561–1565. https://doi.org/10.1002/art.20216

    Article  CAS  PubMed  Google Scholar 

  23. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J, Wilson M, O’Brien SJ, Carrington M (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31(4):429–434. https://doi.org/10.1038/ng934

    Article  CAS  PubMed  Google Scholar 

  24. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M, Cox S, Little AM, Alexander GJ, Cramp ME, O’Brien SJ, Rosenberg WM, Thomas DL, Carrington M (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305(5685):872–874. https://doi.org/10.1126/science.1097670

    Article  CAS  PubMed  Google Scholar 

  25. Gazit R, Garty BZ, Monselise Y, Hoffer V, Finkelstein Y, Markel G, Katz G, Hanna J, Achdout H, Gruda R, Gonen-Gross T, Mandelboim O (2004) Expression of KIR2DL1 on the entire NK cell population: a possible novel immunodeficiency syndrome. Blood 103(5):1965–1966. https://doi.org/10.1182/blood-2003-11-3796

    Article  CAS  PubMed  Google Scholar 

  26. Chaisri S, Leelayuwat C, Romphruk A (2017) Genetic study of KIR and HLA ligands in 235 individuals from Northeastern Thailand. Hum Immunol 78(5–6):395–396. https://doi.org/10.1016/j.humimm.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  27. Chaisri S, Kitcharoen K, Romphruk AV, Romphruk A, Witt CS, Leelayuwat C (2013) Polymorphisms of killer immunoglobulin-like receptors (KIRs) and HLA ligands in northeastern Thais. Immunogenetics 65(9):645–653. https://doi.org/10.1007/s00251-013-0716-7

    Article  CAS  PubMed  Google Scholar 

  28. Romphruk AV, Romphruk A, Kongmaroeng C, Klumkrathok K, Paupairoj C, Leelayuwat C (2010) HLA class I and II alleles and haplotypes in ethnic Northeast Thais. Tissue Antigens 75(6):701–711. https://doi.org/10.1111/j.1399-0039.2010.01448.x

    Article  CAS  PubMed  Google Scholar 

  29. WHO (1997) Clinical diagnosis, Chapter 2. In: Dengue hemorrhagic fever: diagnosis, treatment, prevention and control, 2nd edn. World Health Organization, Geneva, pp 12–23

    Google Scholar 

  30. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaewmanee M, Phoksawat W, Romphruk A, Romphruk AV, Jumnainsong A, Leelayuwat C (2013) Development of a multiplex polymerase chain reaction-sequence-specific primer method for NKG2D and NKG2F single-nucleotide polymorphism typing using isothermal multiple displacement amplification products. Tissue Antigens 81(6):419–427. https://doi.org/10.1111/tan.12105

    Article  CAS  PubMed  Google Scholar 

  32. Rajalingam R, Du Z, Meenagh A, Luo L, Kavitha VJ, Pavithra-Arulvani R, Vidhyalakshmi A, Sharma SK, Balazs I, Reed EF, Pitchappan RM, Middleton D (2008) Distinct diversity of KIR genes in three southern Indian populations: comparison with world populations revealed a link between KIR gene content and pre-historic human migrations. Immunogenetics 60(5):207–217. https://doi.org/10.1007/s00251-008-0286-2

    Article  CAS  PubMed  Google Scholar 

  33. de Wit J, Borghans JA, Kesmir C, van Baarle D (2016) Editorial: role of HLA and KIR in Viral Infections. Front Immunol 7:286. https://doi.org/10.3389/fimmu.2016.00286

    Article  PubMed  PubMed Central  Google Scholar 

  34. Beltrame LM, Sell AM, Moliterno RA, Clementino SL, Cardozo DM, Dalalio MM, Fonzar UJ, Visentainer JE (2013) Influence of KIR genes and their HLA ligands in susceptibility to dengue in a population from southern Brazil. Tissue Antigens 82(6):397–404. https://doi.org/10.1111/tan.12256

    Article  CAS  PubMed  Google Scholar 

  35. Romphruk A, Burusrux S, Puapairoj C, Urwijitaroon Y, Romphruk A, Leelayuwat C (1996) Distribution of HLA-A and B antigens in northeastern-Thais. J Med Assoc Thai 79(11):732–736

    CAS  PubMed  Google Scholar 

  36. Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S, Kalayanarooj S, Endy TP, Libraty DH, Nisalak A, Innis BL, Rothman AL, Ennis FA, Chandanayingyong D (2002) HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60(4):309–318. https://doi.org/10.1034/j.1399-0039.2002.600405.x

    Article  CAS  PubMed  Google Scholar 

  37. Gupta S, Agarwal A, Kumar A, Biswas D (2018) Genome-wide analysis to identify HLA factors potentially associated with severe dengue. Front Immunol 9:728. https://doi.org/10.3389/fimmu.2018.00728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Culshaw A, Ladell K, Gras S, McLaren JE, Miners KL, Farenc C, van den Heuvel H, Gostick E, Dejnirattisai W, Wangteeraprasert A, Duangchinda T, Chotiyarnwong P, Limpitikul W, Vasanawathana S, Malasit P, Dong T, Rossjohn J, Mongkolsapaya J, Price DA, Screaton GR (2017) Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8(+) T cell response. Nat Immunol 18(11):1228–1237. https://doi.org/10.1038/ni.3850

    Article  CAS  PubMed  Google Scholar 

  39. Graef T, Moesta AK, Norman PJ, Abi-Rached L, Vago L, Older Aguilar AM, Gleimer M, Hammond JA, Guethlein LA, Bushnell DA, Robinson PJ, Parham P (2009) KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J Exp Med 206(11):2557–2572. https://doi.org/10.1084/jem.20091010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dohring C, Samaridis J, Colonna M (1996) Alternatively spliced forms of human killer inhibitory receptors. Immunogenetics 44(3):227–230. https://doi.org/10.1007/bf02602590

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Vazquez A, Rodrigo L, Martinez-Borra J, Perez R, Rodriguez M, Fdez-Morera JL, Fuentes D, Rodriguez-Rodero S, Gonzaez S, Lopez-Larrea C (2005) Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin-like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection. J Infect Dis 192(1):162–165. https://doi.org/10.1086/430351

    Article  CAS  PubMed  Google Scholar 

  42. Qi Y, Martin MP, Gao X, Jacobson L, Goedert JJ, Buchbinder S, Kirk GD, O’Brien SJ, Trowsdale J, Carrington M (2006) KIR/HLA pleiotropism: protection against both HIV and opportunistic infections. PLoS Pathog 2(8):e79. https://doi.org/10.1371/journal.ppat.0020079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morvan M, Willem C, Gagne K, Kerdudou N, David G, Sebille V, Follea G, Bignon JD, Retiere C (2009) Phenotypic and functional analyses of KIR3DL1+ and KIR3DS1 + NK cell subsets demonstrate differential regulation by Bw4 molecules and induced KIR3DS1 expression on stimulated NK cells. J Immunol 182(11):6727–6735. https://doi.org/10.4049/jimmunol.0900212

    Article  CAS  PubMed  Google Scholar 

  44. Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A, Streeck H, Waring M, Meier A, Brander C, Lifson JD, Allen TM, Carrington M, Altfeld M (2007) Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 204(12):3027–3036. https://doi.org/10.1084/jem.20070695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Thailand Research Fund, Grant for new researcher (MRG6180172) to Suwit Chaisri. The authors thank Dr. Prida Malasit and Dr. Juthathip Mongkolsapaya for kindly sharing the dengue DNA samples and clinical data, and we thank Dr. Mayurachat Keawmanee and Dr. Wisitsak Phoksawat for helping in dengue DNA preparation. We also wish to acknowledge the support of the Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanvit Leelayuwat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the samples obtained for this study have been ethically approved by ethical committees with informed consent. The control samples were by the Khon Kaen University Ethics Committee in Human Research (HE42072). The dengue infection samples were by the Human Research Ethics Committee of Thammasat University No. 1 (COA 057/59).

Additional information

Edited by Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaisri, S., Jumnainsong, A., Romphruk, A. et al. The effect of KIR and HLA polymorphisms on dengue infection and disease severity in northeastern Thais. Med Microbiol Immunol 209, 613–620 (2020). https://doi.org/10.1007/s00430-020-00685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-020-00685-z

Keywords

Navigation