Skip to main content
Log in

Superparamagnetic Hyperfine Relaxation in Zn0.75Ni0.25Fe2O4

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We studied Zn0.75Ni0.25Fe 2O4 magnetic nanoparticles before and after plasma treatment by employing X-ray diffraction, magnetic measurements, hyperthermia measurements using the mag-neTherm device, and Mössbauer spectroscopy. The Mössbauer spectra of Zn0.75Ni0.25Fe 2O4 were recorded at various temperatures from 4.2 to 295 K. The Mössbauer spectra for temperatures below the superparamagnetic transition temperature exhibited two sextets ascribed to tetrahedral and octahedral sites. Furthermore, the spectra demonstrated superparamagnetic behavior, as indicated by the doublet with zero hyperfine field at 295 K. The Mössbauer spectra exhibited line broadening with increasing temperature, indicating superparamagnetic relaxation. The temperature dependence of the anisotropy energy was calculated based on the relaxation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. D. Jong and P. J. Borm, Int. J. Nanomed. 3, 133 (2008).

    Article  Google Scholar 

  2. S. Patra et al., ACS Appl. Mater. Interfaces 7, 9235 (2015).

    Article  MathSciNet  Google Scholar 

  3. H. Ghayour et al., J. Phys. Chem. Solids 111, 464 (2017).

    Article  ADS  Google Scholar 

  4. D. Lisjak and A. Mertelj, Prog. Mater. Sci. 95, 286 (2018).

    Article  Google Scholar 

  5. M. Vasilakaki et al., Nanoscale 10, 21244 (2018).

    Article  Google Scholar 

  6. J. P. Chen et al., Phys. Rev. B 54, 13 (1996).

    Google Scholar 

  7. D. J. Fatemi et al., J. Appl. Phys. 85, 8 (1999).

    Article  Google Scholar 

  8. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 9 (1999).

    Article  Google Scholar 

  9. Z. X. Tang, C. M. Sorensen, K. J. Klabunde and G. C. Hadjipanayis, Phys. Lett. 67, 25 (1991).

    Google Scholar 

  10. H. Ghayour et al., J. Phys. Chem. Solids 111, 464 (2017).

    Article  ADS  Google Scholar 

  11. M. Dalal et al., J. Magn. Magn. Mater. 460, 12 (2018).

    Article  ADS  Google Scholar 

  12. H. J. Kim and H. Choi, J. Magn. Magn. Mater. 484, 14 (2019).

    Article  ADS  Google Scholar 

  13. H. N. Oak, K. S. Baek and B. C. Cho, Phys. Status Solidi B 207, 479 (1998).

    Article  ADS  Google Scholar 

  14. C. S. Kim et al., J. Magn. Magn. Mater. 568, 254 (2003).

    Google Scholar 

  15. C. S. Kim, S. I. Park and Y. J. Oh, J. Magn. Magn. Mater. 215–216, 40 (2000).

    Article  ADS  Google Scholar 

  16. S. B. Kim, B. W. Lee and C. S. Kim, J. Magn. Magn. Mater. 242–245, 747 (2002).

    Article  ADS  Google Scholar 

  17. M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).

    Article  ADS  Google Scholar 

  18. A. Aharoni, Phys. Rev. B 7, 1103 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Joon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Kim, H.J. Superparamagnetic Hyperfine Relaxation in Zn0.75Ni0.25Fe2O4. J. Korean Phys. Soc. 76, 976–979 (2020). https://doi.org/10.3938/jkps.76.976

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.976

Keywords

Navigation