Skip to main content
Log in

Ripples, Wrinkles, and Crumples in Folded Graphene

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Separation of two-dimensional thin-film-materials into single layers had been considered very challenging both theoretically and experimentally until the mechanical exfoliation method was discovered. After the successful separation of single- and/or few-layer graphene, the possibility of wrinkle formation has been one of the main open topics because they were not readily observed in experiments. Here, we report experimental observations of different kinds of repetitive nanoscale deformations (ripples, wrinkles, and crumples) in folded single-layer graphene (SLG) on an SiO2 substrate. Using high-vacuum atomic force microscopy, we observed that SLG that was pre-transferred onto an SiO2 substrate was accidentally folded multiple times during the tip-scanning, resulting in the formation of bilayer and trilayer graphene (TLG). Through high-resolution tapping-mode scanning, we could observe the wrinkles, ripples, and crumples in TLG. Additionally, we observed a herringbone pattern that was attributed to an intermediate stage between the wrinkles and ripples; this intermediate state was labeled as wrinklon structure. In our analysis, to characterize the ripples, wrinkles, and crumples, we measured the spatial repetition and amplitude of each pattern using their average line profile and compared them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Yoon, H. Cheong, J. S. Choi and B. H. Park, J. Korean Phys. Soc. 60, 1278 (2012).

    Article  ADS  Google Scholar 

  2. V. Carozo et al., Nano Lett. 11, 4527 (2011).

    Article  ADS  Google Scholar 

  3. B. Wang et al., Nano Lett. 17, 1467 (2017).

    Article  ADS  Google Scholar 

  4. K. Nagashio et al., J. Appl. Phys. 110, 024513 (2011).

    Article  ADS  Google Scholar 

  5. W. Gao et al., J. Phys. D: Appl. Phys. 47, 255301 (2014).

    Article  ADS  Google Scholar 

  6. J. Annett and G. L. W. Cross, Nature 535, 271 (2016).

    Article  ADS  Google Scholar 

  7. J. S. Choi et al., Rev. Sci. Instrum. 83, 073905 (2012).

    Article  ADS  Google Scholar 

  8. J. S. Choi et al., Sci. Rep. 4, 7263 (2014).

    Article  Google Scholar 

  9. Y. Park et al., Sci. Rep. 5, 9390 (2015).

    Article  Google Scholar 

  10. N. D. Mermin, Phys. Rev. 176, 250 (1968).

    Article  ADS  Google Scholar 

  11. D. R. Nelson and L. Peliti, J. Phys. 48, 1085 (1987).

    Article  Google Scholar 

  12. P. L. Doussal and L. Radzihovsky, Phys. Rev. Lett. 69, 1209 (1992).

    Article  ADS  Google Scholar 

  13. K. S. Novoselov et al., Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  14. K. S. Novoselov et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  15. J. C. Meyer et al., Nature 446, 60 (2007).

    Article  ADS  Google Scholar 

  16. A. Fasolino, J. H. Los and M. I. Katsnelson, Nat. Mater. 6, 858 (2007).

    Article  ADS  Google Scholar 

  17. K. Xu, P. Cao and J. R. Heath, Nano Lett. 9, 4446 (2009).

    Article  ADS  Google Scholar 

  18. J. S. Choi et al., Science 333, 607 (2011).

    Article  ADS  Google Scholar 

  19. H. Vandeparre et al., Phys. Rev. Lett. 106, 224301 (2011).

    Article  ADS  Google Scholar 

  20. S. Deng and V. Berry, ACS Appl. Mater. Interfaces 8, 24956 (2016).

    Article  Google Scholar 

  21. X. Chen and J. W. Hutchinson, J. Appl. Mech. 71, 597 (2004).

    Article  ADS  Google Scholar 

  22. C. Lee et al., Science 328, 76 (2010).

    Article  ADS  Google Scholar 

  23. D. Yoon, Y-W. Son and H. Cheong, Nano Lett. 11, 3227 (2011).

    Article  ADS  Google Scholar 

  24. S. Deng and V. Berry, Mater. Today 19, 197 (2016).

    Article  Google Scholar 

  25. L. Tapasztó et al., Nat. Phys. 8, 739 (2012).

    Article  Google Scholar 

  26. L. Meng et al., Phys. Rev. B 87, 205405 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sik Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

No, YS., Lee, J.H., Park, B.H. et al. Ripples, Wrinkles, and Crumples in Folded Graphene. J. Korean Phys. Soc. 76, 985–990 (2020). https://doi.org/10.3938/jkps.76.985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.985

Keywords

Navigation