Skip to main content
Log in

Development of a Gd2O2S:Tb Phosphor Screen with an Anti-reflective Layer Fabricated Using Poly Chloro-para-xylylene to Improve Optical Properties in Radiography

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we developed a Gd2O2S:Tb screen with a parylene-C-based antireflective (AR) layer and evaluated its optical and X-ray response properties; in particular, we focused on developing an AR coating layer to improve transmission efficiency. The phosphor screen with the parylene-Cbased AR layer can be fabricated via screen printing and chemical vapor deposition. In particular, experimental results obtained using the AR layer showed improvements of 1.47% in luminescence intensity, as well as a lower full width at half maximum of 9.40, compared to the case without using the AR layer. We observed that the roughness of the AR layer was higher than that of the phosphor screen; the image resolution improved owing to the narrow distribution of the secondary photons resulting from forward scattering attributable mainly to Mie scattering. These results indicate that parylene-C is suitable for developing AR coating materials to improve exposure efficiency while maintaining resolution in radiography systems. Therefore, we believe that the number of photons would be further increased if the AR layer were utilized in commercial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Jenkins, Radiographic Photography and Imaging Processes (Springer Science & Business Media, Heidelberg, 2012).

    Google Scholar 

  2. J. Ball and T. Price, Chesney’s Radiographic Imaging (Blackwell Scientific, Hoboken, 1996).

    Google Scholar 

  3. N. D. Chesneyand and M. O. Chesney, Radiographic Photography (Blackwell Scientific, Hoboken, 1971).

    Google Scholar 

  4. A. Konrad et al., J. Appl. Phys. 86, 3129 (1999).

    Article  ADS  Google Scholar 

  5. J. L. Luo, X. T. Ying, P. N. Wang and L. Y. Chen, J. Korean Phys. Soc. 46, S224 (2005).

    Google Scholar 

  6. S. Y. Kim et al., Nucl. Instrum. Methods Phys. Res. A 576, 70 (2007).

    Article  ADS  Google Scholar 

  7. J. N. Kim et al., J. Nanosci. Nanotechnol. 13, 3455 (2013).

    Article  Google Scholar 

  8. Y. Lee et al., J. Instrum. 8, P03018 (2013).

    Article  Google Scholar 

  9. Y. K. Lee et al., J. Nanosci. Nanotechnol. 13, 7026 (2013).

    Article  Google Scholar 

  10. K. Kim et al., J. Nanosci. Nanotechnol. 16, 11469 (2016).

    Article  Google Scholar 

  11. D. R. Uhlmann et al., J. Non-Cryst. Solids 218, 113 (1997).

    Article  ADS  Google Scholar 

  12. K. Makita et al., J. Sol-Gel Sci. Technol. 14, 175 (1999).

    Article  Google Scholar 

  13. D. G. Chen, Sol. Energy Mater. Sol. Cells 68, 313 (2001).

    Article  Google Scholar 

  14. Y. Xu et al., Appl. Opt. 42, 108 (2003).

    Article  ADS  Google Scholar 

  15. C. J. Brinker and M. S. Harrington, Sol. Energy Mater. 5, 159 (1981).

    Article  ADS  Google Scholar 

  16. K. Scholten et al., Micromachines 9, 422 (2018).

    Article  Google Scholar 

  17. A. S. Zyazin and I. M. Peters, In Medical Imaging 2015: Physics of Medical Imaging. 9412. International Society for Optics and Photonics (Orlando, USA, March 18, 2015).

    Google Scholar 

  18. M. Nikl, Meas. Sci. Technol. 17, R37 (2006).

    Article  ADS  Google Scholar 

  19. S. F. Hasan and S. N. Turki, Int. J. Appl. Innov. Eng. Manag. 2, 96 (2013).

    Google Scholar 

  20. S. Kumar and G. Sinha, Int. J. Innov. Sci. Eng. Technol. 3, 549 (2016).

    Google Scholar 

  21. K. Oh et al., J. Instrum. 7, C02009 (2012).

    Google Scholar 

  22. G. Y. Choi et al., Biomed. Eng. Lett. 6, 26 (2016).

    Article  ADS  Google Scholar 

  23. J. Strong, J. Opt. Soc. Am. 26, 73 (1936).

    Article  ADS  Google Scholar 

  24. A. H. Jareeze, J. Al-Nahrain Univ. 11, 104 (2008).

    Article  Google Scholar 

  25. B. E. Yoldas, Appl. Opt. 19, 1425 (1980).

    Article  ADS  Google Scholar 

  26. Y. Naoko et al., Thin Solid Films 515, 3914 (2007).

    Article  Google Scholar 

  27. International Electrotechnical Commission, Medical diagnostic X-ray equipment - Radiation conditions for use in the determination of characteristics; Ed. 2.0, IEC 61267 (2005).

    Google Scholar 

  28. International Electrotechnical Commission, Medical Electrical Equipment - Characteristics of Digital X-Ray Imaging Devices - Part 1: Determination of the Detective Quantum Efficiency, IEC 62220-1, Geneva, Switzerland (2003).

    Google Scholar 

  29. C. W. Chen et al., J. Mater. Chem. A 3, 9152 (2015).

    Article  Google Scholar 

  30. S. Chen and H. S. Kwok, Opt. Express 18, 37 (2010).

    Article  ADS  Google Scholar 

  31. I. Lee et al., Small 11, 4480 (2015).

    Article  Google Scholar 

  32. T. Yamasaki, S. Kazuhiro and T. Tsutsui, Appl. Phys. Lett. 76, 1243 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Creative Allied Project (CAP-15-06- ETRI) of the National Research Council of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyo-Tae Kim or Kum-Bae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, GS., Choi, SH., Kim, KT. et al. Development of a Gd2O2S:Tb Phosphor Screen with an Anti-reflective Layer Fabricated Using Poly Chloro-para-xylylene to Improve Optical Properties in Radiography. J. Korean Phys. Soc. 76, 1041–1046 (2020). https://doi.org/10.3938/jkps.76.1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.1041

Keywords

Navigation