Skip to main content
Log in

Interaction of an Acid Functionalized Magnetic Ionic Liquid with Gemini Surfactants

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The micellar properties of two Gemini surfactants i.e., butanediyl-1,4-bis(dimethyldodecyl ammonium bromide (C12-4(OH)2-C12,2Br) and butanediyl-1,4-bis(dimethyldohexylammonium bromide) (C16-4-C16, 2Br) in the presence of an imidazolium based acid functionalized magnetic ionic liquid (IL) i.e., 1-acyl-3-methylimidazolium tetrachloroferrate [AcMIm]FeCl4, are studied using various techniques such as surface tension, conductivity, fluorescence and FT-IR spectroscopy. The surface adsorption parameters and thermodynamic parameters are systematically determined. The critical micelle concentration (CMC) is decreased and surface tension of CMC (γcmc) values are increased significantly in the presence of different wt% of the added IL, and the values are observed in the order as 0.07 > 0.05 > 0.02 > water. In this study, the Gibbs energy of adsorption (ΔG oads ) value was found to be greater than the Gibbs energy of micellization (ΔG om ), showing that adsorption is more favored in aqueous Gemini surfactant systems. The FT-IR spectral results further confirm the changes produced by the magnetic IL [AcMIm]FeCl4 on aqueous solutions of C12-4(OH)2-C12,2Br and C16-4-C16,2Br. It is noteworthy that increasing the wt% of [AcMIm]FeCl4 results in an increase in the spontaneity of CMC formation on Gemini surfactants and the IL has more affinity for C16-4-C16, 2Br compared to C12-4(OH)2-C12,2Br.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kar, M., Tutusaus, O., Farlane, D.R.M., Mohtadi, R.: Novel and versatile room temperature ionic liquids for energy storage. Energy Environ. Sci. 12, 566–571 (2019)

    Article  CAS  Google Scholar 

  2. Stark, A., Ott, D., Kralisch, D., Kreisel, G., Ondruschka, B.: Ionic liquids and green chemistry: a lab experiment. J. Chem. Educ. 87, 196–201 (2010)

    Article  CAS  Google Scholar 

  3. Gong, X., West, B., Taylor, A., Li, L.: Study on nanometer-thick room-temperature ionic liquids (RTILs) for application as the media lubricant in heat-assisted magnetic recording (HAMR). Ind. Eng. Chem. Res. 55, 6391–6397 (2016)

    Article  CAS  Google Scholar 

  4. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Egorova, K.S., Gordeev, E.G., Ananikov, V.P.: Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117, 7132–7189 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Omotowa, B.A., Phillips, B.S., Zabinski, J.S., Shreeve, J.M.: Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 43, 5466–5471 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Liaw, H.J., Chen, C.C., Chen, Y.C., Chen, J.R., Huang, S.K., Liu, S.N.: Relationship between flash point of ionic liquids and their thermal decomposition. Green Chem. 14, 2001–2008 (2012)

    Article  CAS  Google Scholar 

  8. Widegren, J.A., Wang, Y.M., Henderson, W.A., Magee, J.W.: Relative volatilities of ionic liquids by vacuum distillation of mixtures. J. Phys. Chem. B 111, 8959–8964 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Tao, R., Tamas, G., Xue, L., Simon, S.L., Quitevis, E.L.: Thermophysical properties of imidazolium-based ionic liquids: the effect of aliphatic versus aromatic functionality. J. Chem. Eng. Data 59, 2717–2724 (2014)

    Article  CAS  Google Scholar 

  10. Noshadi, S., Sadeghi, R.: Vapor pressure osmometry, volumetry, and compressibility properties for solutions of several imidazolium based ionic liquids in (glycine + water) solutions. J. Chem. Eng. Data 62, 4073–4082 (2017)

    Article  CAS  Google Scholar 

  11. Musiał, M., Malarz, K., Wilczkiewicz, A.M., Musiol, R., Zorębski, E., Dzida, M.: Pyrrolidinium-based ionic liquids as sustainable media in heat-transfer processes. ACS Sustain. Chem. Eng. 5, 11024–11033 (2017)

    Article  CAS  Google Scholar 

  12. Anthony, J.L., Maginn, E.J., Brennecke, J.Z.: Solution thermodynamics of imidazolium-based ionic liquids and water. J. Phys. Chem. B 105, 10942–10949 (2001)

    Article  CAS  Google Scholar 

  13. Wang, B., Qin, L., Mu, T., Xue, Z., Gao, G.: Are ionic liquids chemically stable? Chem. Rev. 117, 7113–7131 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Behera, K., Kumar, V., Pandey, S.K.: Role of the surfactant structure in the behavior of hydrophobic ionic liquids within aqueous micellar solutions. Chem. Phys. Chem. 11, 1044–1052 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Xu, Q., Wang, L., Xing, F.: Synthesis and properties of dissymmetric Gemini surfactants. J. Surf. Deterg. 14, 85–90 (2011)

    Article  CAS  Google Scholar 

  16. Kumari, S., Aggrawal, R., Halder, S.S., Sundar, G.S., Saha, S.K.: Effect of hydrophobicity of tails and hydrophilicity of spacer group of cationic Gemini surfactants on solvation dynamics and rotational relaxation of coumarin 480 in aqueous micelles. ACS Omega 2, 5898–5910 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deng, S., Zhao, J.: Self-assembly of cationic gemini surfactants, alkanediyl-bis-(dimethyldodecyl-ammonium bromide), in cyclohexane: effects of spacer length on their association into reverse lyotropic liquid crystalline or reverse vesicles. Soft Matter 14, 734–741 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Saha, A., Payra, S., Dutta, D., Banerjee, S.: Acid-functionalised magnetic ionic liquid [acmim]Fecl4 as catalyst for oxidative hydroxylation of arylboronic acids and regioselective Friedel–Crafts acylation. Chem. Plus. Chem. 82, 1129–1134 (2017)

    CAS  PubMed  Google Scholar 

  19. Shang, Y., Wang, T., Han, X., Peng, C., Liu, H.: Effect of ionic liquids CnmimBr on properties of Gemini surfactant 12-3-12 aqueous solution. Ind. Eng. Chem. Res. 49, 8852–8857 (2010)

    Article  CAS  Google Scholar 

  20. Ao, M., Huang, P., Xu, G., Yang, X., Wang, Y.: Aggregation and thermodynamic properties of ionic liquid-type Gemini imidazolium surfactants with different spacer length. Colloid Polym. Sci. 287, 395–402 (2009)

    Article  CAS  Google Scholar 

  21. More, U., Kumari, P., Vaid, Z., Behera, K., Malek, N.I.: Interaction between ionic liquids and Gemini surfactant: a detailed investigation into the role of ionic liquids in modifying properties of aqueous Gemini surfactant. J. Surf. Deterg. 19, 75–89 (2016)

    Article  CAS  Google Scholar 

  22. Tikariha, D., Singh, N., Satnami, M.L., Ghosh, K.K., Barbero, N., Quagliotto, P.: Physicochemical characterization of cationic Gemini surfactants and their effect on reaction kinetics in ethylene glycol–water medium. Colloids Surf. A 411, 1–11 (2012)

    Article  CAS  Google Scholar 

  23. Sinha, S., Tikariha, D., Lakra, J., Yadav, T., Kumari, S., Saha, S.K., Ghosh, K.K.: Interaction of bovine serum albumin with cationic monomeric and dimeric surfactants: a comparative study. J. Mol. Liq. 218, 421–428 (2016)

    Article  CAS  Google Scholar 

  24. Liu, H., Bara, J.E., Turner, C.H.: Tuning the adsorption interactions of imidazole derivatives with specific metal cations. J. Phys. Chem. A 118, 3944–3951 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Banjare, M.K., Behera, K., Satnami, M.L., Pandey, S., Ghosh, K.K.: Self-assembly of a short-chain ionic liquid within deep eutectic solvents. RSC Adv. 8, 7969–7979 (2018)

    Article  CAS  Google Scholar 

  26. Socha, A.M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., George, A., Tran, K., Stavila, V., Venkatachalam, S., Hahn, M.G., Simmons, B.A., Singh, S.: Comparison of γ-irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production. PNAS 35, 3587–3595 (2014)

    Article  CAS  Google Scholar 

  27. Rosen, M.J., Davenport, L.: Fluorescence study of premicellar aggregation in cationic Gemini surfactants. Langmuir 17, 6148–6154 (2001)

    Article  CAS  Google Scholar 

  28. Villa, C., Baldassari, S., Martino, D.F.C., Spinella, A., Caponetti, E.: Green synthesis, molecular characterization and associative behavior of some Gemini surfactants without a spacer group. Materials 6, 1506–1519 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanan, R., Kaur, R., Mahajan, R.K.: Micellar transitions in catanionic ionic liquid–ibuprofen aqueous mixtures; effects of composition and dilution. RSC Adv. 4, 64877–64889 (2014)

    Article  CAS  Google Scholar 

  30. Vishnyakov, A., Lee, M.T., Neimark, A.V.: Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. J. Phys. Chem. Lett. 4, 797–802 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Bhadani, A., Kafle, A., Koura, S., Sakai, K., Sakai, H., Abe, M.: Physicochemical evaluation of micellar solution and lyotropic phases formed by self-assembled aggregates of morpholinium Geminis. ACS Omega 2, 5324–5334 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, L.J., Lin, S.Y., Huang, C.C.: Effect of hydrophobic chain length of surfactants on enthalpy−entropy compensation of micellization. J. Phys. Chem. B 102, 4350–4356 (1998)

    Article  CAS  Google Scholar 

  33. Daza, F.A.G., Mackie, A.D.: Low critical micelle concentration discrepancy between theory and experiment. J. Phys. Chem. Lett. 5, 2027–2032 (2014)

    Article  CAS  Google Scholar 

  34. Tiwari, A.K., Saha, S.K.: Aggregation properties and thermodynamics of micellization of Gemini surfactants with diethyl ether spacer in water and water–organic solvent mixed media. J. Chem. Thermodyn. 70, 24–32 (2014)

    Article  CAS  Google Scholar 

  35. Tiwari, A.K., Sowmiya, S., Saha, S.K.: Study on premicellar and micellar aggregates of Gemini surfactants with hydroxyl substituted spacers in aqueous solution using a probe showing TICT fluorescence properties. J. Photochem. Photobiol. A 223, 6–13 (2011)

    Article  CAS  Google Scholar 

  36. Carpena, P., Aguiar, J., Galván, P.B., Ruiz, C.C.: Problems associated with the treatment of conductivity–concentration data in surfactant solutions: simulations and experiments. Langmuir 18, 6054–6058 (2002)

    Article  CAS  Google Scholar 

  37. Kumar, A., Banjare, M.K., Sinha, S., Yadav, T., Sahu, R., Satnami, M.L., Ghosh, K.K.: Imidazolium-based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic and gemini surfactants. J. Surf. Deterg. 21, 355–366 (2018)

    Article  CAS  Google Scholar 

  38. Cognigni, A., Gaertner, P., Zirbs, R., Peterlik, H., Prochazka, K., Bica, S.K.: Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions. Phys. Chem. Chem. Phys. 18, 13375–13384 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian, T., Hu, Q., Wang, Y., Gao, Y., Yu, L.: Effect of imidazolium-based surface-active ionic liquids on the orientation of liquid crystals at various fluid/liquid crystal interfaces. Langmuir 32, 11745–11753 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. Maeda, H., Muroi, S., Kakehashi, R.: Effects of ionic strength on the critical micelle concentration and the surface excess of dodecyldimethylamine oxide. J. Phys. Chem. B 101, 7378–7382 (1997)

    Article  CAS  Google Scholar 

  41. Behera, K., Dahiya, P., Pandey, S.: Effect of added ionic liquid on aqueous Triton X–100 micelles. J. Colloid Interface Sci. 307, 235–245 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Sorkhabi, H.A., Kazempour, A.: Thermodynamic study of aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid using potentiometric measurements at different temperatures. J. Chem. Eng. Data 61, 3542–3547 (2016)

    Article  CAS  Google Scholar 

  43. Kumar, A., Banjare, M.K., Reshma, Sinha, S., Yadav, T., Ghosh, K.K.: Imidazolium‐based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic, and Gemini surfactants, J. Surfactants Deterg. 21, 355–366 (2018)  

    Article  CAS  PubMed  Google Scholar 

  44. Dezhampanah, H., Mohammad-khah, A., Aghajani, N.: Equilibrium and thermodynamic studies of thionine adsorption from aqueous solution onto rice husk. Eur. Chem. Bull. 2, 709–714 (2013)

    CAS  Google Scholar 

  45. Chavda, S., Kuperkar, K., Bahadur, P.: Formation and growth of Gemini surfactant (12-s-12) micelles as a modulate by spacers: a thermodynamic and small-angle neutron scattering (SANS) study. J. Chem. Eng. Data. 56, 2647–2654 (2011)

    Article  CAS  Google Scholar 

  46. Mozrzymas, A.: Modelling of the critical micelle concentration of cationic Gemini surfactants using molecular connectivity indices. J. Solution Chem. 42, 2187–2199 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Z., Fan, Y., Tian, M., Wang, R., Han, Y., Wang, Y.: Surfactant selection principle for reducing critical micelle concentration in mixtures of oppositely charged Gemini surfactants. Langmuir 30, 7968–7976 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. Tikariha, D., Ghosh, K.K.: Mixed micellization properties of cationic monomeric and Gemini surfactants. J. Chem. Eng. Data 55, 4162–4167 (2010)

    Article  CAS  Google Scholar 

  49. Ghosh, S., Krishnan, A., Das, P.K., Ramakrishnan, S.: Determination of critical micelle concentration by hyper-Rayleigh scattering. J. Am. Chem. Soc. 125, 1602–1606 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. Banjare, M.K., Behera, K., Kurrey, R., Banjare, R.K., Satnami, M.L., Pandey, S., Ghosh, K.K.: Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: a comparative study and potential application in antidepressants drug aggregation. Spectrochim. Acta A 199, 376–386 (2018)

    Article  CAS  Google Scholar 

  51. Kanduč, M., Schlaich, A., Schneck, E., Netz, R.R.: Water-mediated interactions between hydrophilic and hydrophobic surfaces. Langmuir 32, 8767–8782 (2016)

    Article  PubMed  CAS  Google Scholar 

  52. Vegt, N.F.A.V.D., Nayar, D.: The hydrophobic effect and the role of co-solvents. J. Phys. Chem. B 121, 9986–9998 (2017)

    Article  PubMed  CAS  Google Scholar 

  53. Boeckler, C., Oekermann, T., Feldhoff, A., Wark, M.: Role of the critical micelle concentration in the electrochemical deposition of nanostructured ZnO films under utilization of amphiphilic molecules. Langmuir 22, 9427–9430 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Prof. Subit K. Saha Birla Institute of Technology and Science Pilani, Hyderabad Telangana, India. Dr. Kamalakanta Behera is thankful to the Science and Engineering Research Board (SERB), New Delhi, India, for providing a research grant (YSS/2015/001997). The authors are grateful to Prof. M. K. Deb, Head, School of Studies in Chemistry, PT. Ravishankar Shukla University, Raipur (C.G.) for providing the FTIR instrument.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Kumar Banjare, Subhash Banerjee or Kallol Kumar Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryawanshi, R., Banjare, M.K., Behera, K. et al. Interaction of an Acid Functionalized Magnetic Ionic Liquid with Gemini Surfactants. J Solution Chem 49, 715–731 (2020). https://doi.org/10.1007/s10953-020-00990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00990-4

Keywords

Navigation