Skip to main content
Log in

Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we study numerically two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equations. A centered finite difference method is exploited to discretize the spatial variables and leads to a system of the ordinary differential equation, in which the resulting coefficient matrix is complex symmetric and possesses the block Toeplitz structure. An exponential Runge–Kutta method is employed to solve such a system of the ordinary differential equation. Theoretically, the proposed method is second-order accuracy in space and fourth-order accuracy in time, respectively. In the practical implementation, the product of a block Toeplitz matrix exponential and a vector is calculated by the shift-invert Lanczos method. Meanwhile, the sectorial operator (the coefficient matrix) guarantees the fast approximation by the shift-invert Lanczos method. Numerical experiments are carried out to testify the theoretical results and demonstrate that the proposed method enjoys the excellent computational advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arshed, S.: Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media. Optik 160, 322–332 (2018)

    Article  Google Scholar 

  3. Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  5. Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Q., Gunzburger, M.D., Peterson, J.S.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34, 54–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  9. Gohberg, I., Semencul, A.: On the inversion of finite Toeplitz matrices and their continuous analogs. Matem. Issled. 2, 201–233 (1972)

    MATH  Google Scholar 

  10. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Guo, B.L., Huo, Z.H.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation. Fract. Calc. Appl. Anal. 16, 226–242 (2013)

    MathSciNet  MATH  Google Scholar 

  12. He, D., Pan, K.: An unconditionally stable linearized difference scheme for the fractional Ginzburg–Landau equation. Numer. Algorithms 79, 899–925 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heinig, G., Rost, L.: Algebraic Methods for Toeplitz-like Matrices and Operators. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  14. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  15. Hochbruck, M., Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Appl. Numer. Math. 53, 323–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  18. Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Kluwer, Dordrecht (2002)

    Google Scholar 

  19. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  MATH  Google Scholar 

  23. Lee, S., Liu, X., Sun, H.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19, 87–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, M., Huang, C.M.: An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian. Numer. Methods Part. Differ. Equ. 35, 394–421 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, M., Huang, C.M., Wang, N.: Galerkin element method for the nonlinear fractional Ginzburg–Landau equation. Appl. Numer. Math. 118, 131–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, H., Bates, P.W., Lü, S.J., Zhang, M.J.: Dynamics of the 3-D fractional complex Ginzburg–Landau equation. J. Differ. Equ. 259, 5276–5301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, H., Lü, S.J.: Asymptotic dynamics of 2D fractional complex Ginzburg–Landau equation. Int. J. Bifurc. Chaos 23, 1350202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, H., Lü, S.J.: Random attractor for fractional Ginzburg–Landau equation with multiplicative noise. Taiwan. J. Math. 18, 435–450 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, H., Lü, S.J., Zhang, M.J.: Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg–Landau equation. Discrete Contion. Dyn. Syst. 37, 2539–2564 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Millot, V., Sire, Y.: On a fractional Ginzburg–Landau equation and \(1/2\)-Harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Milovanov, A., Rasmussen, J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 75–80 (2005)

    Article  MATH  Google Scholar 

  33. Mohebbi, A.: Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg–Landau equation. Eur. Phys. J. Plus 133, 67 (2018)

    Article  Google Scholar 

  34. Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT Numer. Math. 44, 595–615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mvogo, A., Tambue, A., Ben-Bolie, G., Kofane, T.: Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation. Commun. Nonlinear Sci. 39, 396–410 (2016)

    Article  MathSciNet  Google Scholar 

  36. Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction–diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Pang, H., Sun, H.: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models. East Asian J. Appl. Math. 4, 53–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pang, H., Sun, H.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pu, X.K., Guo, B.L.: Well-posedness and dynamics for the fractional Ginzburg–Landau equation. Appl. Anal. 92, 31–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  41. Shu, J., Li, P., Zhang, J., Liao, O.: Random attractors for the stochastic coupled fractional Ginzburg–Landau equation with additive noise. J. Math. Phys. 56, 102702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tarasov, V., Zaslavsky, G.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)

    Article  Google Scholar 

  43. Tarasov, V., Zaslavsky, G.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16, 023110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, N., Huang, C.M.: An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations. Comput. Math. Appl. 75, 2223–2242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, P., Huang, C.M.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, P., Huang, C.M.: An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation. J. Comput. Phys. 312, 31–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, P., Huang, C.M.: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation. BIT Numer. Math. 58, 783–805 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, M., Zhang, G.F., Liao, L.D.: Fast iterative solvers and simulation for the space fractional Ginzburg–Landau equations. Comput. Math. Appl. 78, 1793–1800 (2019)

    Article  MathSciNet  Google Scholar 

  51. Zhang, Q., Ren, Y., Lin, X., Xu, Y.: Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations. Appl. Math. Comput. 358, 91–110 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, Q., Pan, K., Lin, X., Ren, Y.: Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation (revised)

  53. Zhang, Q., Zhang, L., Sun, H.: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations (submitted)

  54. Zhao, X., Sun, Z., Hao, Z.: Fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported in part by Natural Science Foundation of China (Grant Number 11501514), Natural Sciences Foundation of Zhejiang Province (Grant Number LY19A010026), the Zhejiang Province “Yucai” Project, the Fundamental Research Funds of Zhejiang Sci-Tech University (Grant Number 2019Q072), the research from Xuzhou University of Technology (Grant XKY2015302), the “Peiyu” Project from Xuzhou University of Technology (Grant Number XKY2019104), the Science and Technology Development Fund, Macau SAR (File Number 0118/2018/A3), and MYRG2018-00015-FST from University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Q. & Sun, HW. Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations. J Sci Comput 83, 59 (2020). https://doi.org/10.1007/s10915-020-01240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01240-x

Keywords

Mathematics Subject Classification

Navigation