Skip to main content
Log in

Strong-Coupling Effects on Quantum Transport in an Ultracold Fermi Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We theoretically investigate quantum conductance across a point contact between two strongly-interacting ultracold Fermi gases. We evaluate the tunneling current, taking into account pairing fluctuations in the Fermi gases within the framework of a combined strong-coupling T-matrix approximation with the Schwinger-Keldysh non-equilibrium formalism. We show that quasi-particle conductance is gradually suppressed, as one passes through the BCS–BEC crossover region from the weak-coupling side. On the other hand, with increasing the strength of a pairing interaction, the fluctuation-pair conductance is found to remarkably increase in the crossover region, which is followed by the suppression in the strong-coupling regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  2. C.A.R. Sa de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  3. Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89, 130402 (2002)

    Article  ADS  Google Scholar 

  4. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  5. C. Sanner, E.J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers, W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011)

    Article  ADS  Google Scholar 

  6. M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012)

    Article  ADS  Google Scholar 

  7. S. Tsuchiya, R. Watanabe, Y. Ohashi, Phys. Rev. A 80, 033613 (2009)

    Article  ADS  Google Scholar 

  8. R. Haussmann, W. Ranter, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2009)

    Article  ADS  Google Scholar 

  9. T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 86, 043622 (2012)

    Article  ADS  Google Scholar 

  10. P. van Wyk, H. Tajima, R. Hanai, Y. Ohashi, Phys. Rev. A 93, 013621 (2016)

    Article  ADS  Google Scholar 

  11. S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, T. Esslinger, Nature 517, 64 (2015)

    Article  ADS  Google Scholar 

  12. S. Krinner, M. Lebrat, D. Husmann, C. Grenier, J.-P. Brantut, T. Esslinger, Proc. Natl. Acad. Sci. 113, 8144 (2016)

    Article  ADS  Google Scholar 

  13. Y. Imry, R. Landauer, Rev. Mod. Phys. 71, S306 (1999)

    Article  Google Scholar 

  14. Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  15. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  16. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  17. S. Uchino, M. Ueda, Phys. Rev. Lett. 118, 105303 (2017)

    Article  ADS  Google Scholar 

  18. B. Liu, H. Zhai, S. Zhang, Phys. Rev. A 95, 013623 (2017)

    Article  ADS  Google Scholar 

  19. J.C. Cuevas, A. Martìn-Rodero, A. Levy Yeyati, Phys. Rev. B 54, 7366 (1996)

    Article  ADS  Google Scholar 

  20. J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

Download references

Acknowledgements

We thank D. Kagamihara and D. Inotani for useful discussions. This work was supported by a Grant-in-aid for Scientific Research from MEXT and JSPS in Japan (Nos. JP18K11345, JP18H05406 and JP19K03689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Furutani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furutani, K., Ohashi, Y. Strong-Coupling Effects on Quantum Transport in an Ultracold Fermi Gas. J Low Temp Phys 201, 49–57 (2020). https://doi.org/10.1007/s10909-020-02482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02482-7

Keywords

Navigation