Skip to main content

Advertisement

Log in

Non-destructive quality control detection of endogenous contaminations in walnuts using terahertz spectroscopic imaging

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The precise detection of foreign bodies in food is significant for guaranteeing food safety and quality. Terahertz (THz) spectroscopic imaging is a rapidly evolving technique with the advantages of non-destructive, non-ionization, and spectral fingerprinting characteristics, so it has attracted a lot of attention in the food industry. In this paper, the possibility of THz spectroscopic imaging in the detection of endogenous contaminations in a complex food matrix was explored. We first tried to detect endogenous foreign bodies in walnuts though comparing the typical absorption spectra of kernels and shells with different concentrations. The spectral classification could be realized by principal component analysis with an accuracy higher than 95%, which proved the feasibility of distinguishing shells from kernels, and then, THz imaging was applied to locate shells and kernels in tablets. The results of this study showed that THz spectroscopic imaging could discriminate shell contaminations from walnut kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Arduini, S. Cinti, V. Scognamiglio, D. Moscone, Microchim. Acta 183, 2063 (2016)

    CAS  Google Scholar 

  2. N. Cebi, C.E. Dogan, A. Develioglu, M.E.A. Yayla, O. Sagdic, Food Chem. 228, 116 (2017)

    CAS  PubMed  Google Scholar 

  3. M. Graves, A. Smith, B. Batchelor, Trends Food Sci. Technol. 9, 21 (1998)

    CAS  Google Scholar 

  4. H. Einarsdottir, M.J. Emerson, L.H. Clemmensen, K. Scherer, K. Willer, M. Bech, Food Control 67, 39 (2016)

    CAS  Google Scholar 

  5. M.S. Nielsen, T. Lauridsen, L.B. Christensen, R. Feidenhans, Food Control 30, 531 (2013)

    Google Scholar 

  6. G. Ginesu, D.D. Giusto, V. Margner, P. Meinlschmidt, IEEE Trans. Ind. Electron. 51, 480 (2004)

    Google Scholar 

  7. A.A. Gowen, B.K. Tiwari, P.J. Cullen, K. McDonnell, C.P. O’Donnell, Trends Food Sci. Technol. 21, 190 (2010)

    CAS  Google Scholar 

  8. J. Chandrapala, C. Oliver, S. Kentish, M. Ashokkumar, Trends Food Sci. Technol. 26, 88 (2012)

    CAS  Google Scholar 

  9. B. Zhao, Y. Jiang, O.A. Basir, G.S. Mittal, J. Food Qual. 27, 274 (2004)

    Google Scholar 

  10. E. Abraham, A. Younus, J.C. Delagnes, P. Mounaix, Appl. Phys. A 100, 585 (2010)

    CAS  Google Scholar 

  11. C.C. Yang, M.S. Kim, S. Kang, B.K. Cho, K.L. Chao, A.M. Lefcourt et al., J. Food Eng. 108, 312 (2012)

    Google Scholar 

  12. D. Mittleman, Nature 444, 560 (2006)

    Google Scholar 

  13. K.Q. Wang, D.W. Sun, H.B. Pu, Trends Food Sci. Technol. 67, 93 (2017)

    CAS  Google Scholar 

  14. G. Ok, H.J. Kim, H.S. Chun, S.W. Choi, Food Control 42, 284 (2014)

    Google Scholar 

  15. G. Kim, J. Kim, S. Jeon, J. Kim, K.K. Park, C.H. Oh, J. Infrared Millim. Terahertz Waves 33, 657 (2012)

    Google Scholar 

  16. S.H. Lu, X. Zhang, Z.Y. Zhang, Y.P. Yang, Y.H. Xiang, Food Chem. 211, 494 (2016)

    CAS  PubMed  Google Scholar 

  17. H.B. Liu, H. Zhong, N. Karpowicz, Y.Q. Chen, X.C. Zhang, Proc. IEEE 95, 1514 (2007)

    CAS  Google Scholar 

  18. R. Fukasawa, IEEE Trans. Terahertz Sci. Technol. 5, 1121 (2015)

    Google Scholar 

  19. M. Walther, B.M. Fischer, A. Ortner, A. Bitzer, A. Thoman, H. Helm, Anal. Bioanal. Chem. 397, 1009 (2010)

    CAS  PubMed  Google Scholar 

  20. B.B. Hu, M.C. Nuss, Opt. Lett. 20, 1716 (1995)

    CAS  PubMed  Google Scholar 

  21. Y.C. Shen, Int. J. Pharm. 417, 48 (2011)

    CAS  PubMed  Google Scholar 

  22. N. Luo, D. Wang, S.F. Wang, P. Han, Spectrosc. Spectr. Anal. 39, 349 (2019)

    CAS  Google Scholar 

  23. S.H. Baek, J.H. Kang, Y.H. Hwang, K.M. Ok, K. Kwak, H.S. Chun, J. Infrared Millim. Terahertz 37, 486 (2016)

    CAS  Google Scholar 

  24. J.J. Liu, Microw. Opt. Technol. Lett. 59, 654 (2017)

    Google Scholar 

  25. X.C. Shen, B. Li, X. Li, Trans. CSAE 33, 288 (2017)

    Google Scholar 

  26. S.Y. Qi, Z.W. Zhang, K. Zhao, Spectrosc. Spectr. Anal. 32, 3390 (2012)

    CAS  Google Scholar 

  27. H.Y. Ge, Y.Y. Jiang, F.Y. Lian, Spectrosc. Spectr. Anal. 34, 2897 (2014)

    CAS  Google Scholar 

  28. G. Ok, K. Park, M.C. Lim, H.J. Jang, S.W. Choi, J. Food Eng. 221, 124 (2018)

    Google Scholar 

  29. C. Wang, R. Zhou, Y. Huang, L. Xie, Y. Ying, Food Control 97, 100 (2019)

    CAS  Google Scholar 

  30. Y.K. Lee, S.W. Choi, S.T. Han, D.H. Woo, H.S. Chun, J. Food Prot. 75, 179 (2012)

    PubMed  Google Scholar 

  31. Y.Y. Jiang, H.Y. Ge, Y. Zhang, Optik 181, 1130 (2019)

    CAS  Google Scholar 

  32. H.J. Shin, S.W. Choi, G. Ok, Food Chem. 245, 282 (2018)

    CAS  PubMed  Google Scholar 

  33. P.M. Kris-Etherton, J. Nutr. 144, 547 (2014)

    Google Scholar 

  34. World-Walnuts-Market analysis, forecast, size, trends and insights. (IndexBox, 2018). https://www.indexbox.io/store/world-walnuts-market-report-analysis-and-forecast-to-2020/ Accessed 23 Oct 2018

  35. T.M. Korter, R. Balu, M.B. Campbell, M.C. Beard, S.K. Gregurick, E. Heilweil, J. Chem. Phys. Lett. 418, 65 (2006)

    CAS  Google Scholar 

  36. Y. Ueno, R. Rungsawang, I. Tomita, K. Ajito, Anal. Chem. 78, 5424 (2006)

    CAS  PubMed  Google Scholar 

  37. J.Y. Qin, L.J. Xie, Y.B. Ying, Food Chem. 170, 415 (2015)

    CAS  PubMed  Google Scholar 

  38. W.D. Xu, L.J. Xie, J.F. Zhu, X. Xu, Z.Z. Ye, C. Wang et al., ACS Photon. 3, 2308 (2016)

    CAS  Google Scholar 

  39. X.C. Zhang, J.Z. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010)

    Google Scholar 

  40. T.D. Dorney, R.G. Baraniuk, D.M. Mittleman, J. Opt. Soc. Am. A 18, 1562 (2001)

    CAS  Google Scholar 

  41. H. Abdi, L.J. Williams, Wiley Interdiscip. Rev. 2, 433 (2010)

    Google Scholar 

  42. I. Jolliffe, Principal component analysis. Wiley StatsRef: Statistics Reference Online (2014)

  43. X.M. Wei, Y.F. Shao, X.Y. Ying, Food Sci. Tech-Brazil. 33, 85 (2012)

    Google Scholar 

  44. Y.H. Ma, Q. Wang, L.Y. Li, J. Quant. Spectrosc. Radiat. Trans. 117, 7 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supported by the National Key R&D Program of China (2017YFC1600805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Ying.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hameed, S., Xie, L. et al. Non-destructive quality control detection of endogenous contaminations in walnuts using terahertz spectroscopic imaging. Food Measure 14, 2453–2460 (2020). https://doi.org/10.1007/s11694-020-00493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00493-2

Keywords

Navigation