Skip to main content
Log in

Influence of steel corrosion to flexural behavior of coral aggregate concrete beam

钢筋锈蚀对珊瑚混凝土梁抗弯性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To study the flexural behavior and calculation model, 8 coral aggregate concrete (CAC) beams with different types of steel were designed. The flexural behavior of CAC beam was tested. The failure mode, bearing capacity, the maximum crack width (ws) and average crack spacing (lm) were studied. A calculation model for the bearing capacity of CAC beam was proposed. The results indicated that with the steel strength increased, the cracking moment (Mcr) and ultimate moment (Mu) of CAC beam increased, and the development of the ws gradually slowed, which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam. For CAC structures in the ocean engineering, it is recommended to use organic new coated steel to extend its effective service life. In addition, considering the influence of steel corrosion, a calculation model for the Mcr, Mu, lm and ws of CAC beam was established.

摘要

本文研究了钢筋锈蚀对珊瑚混凝土(CAC)梁抗弯性能的影响. 首先, 对 8 根不同种类钢筋的 CAC 梁进行抗弯性能试验, 研究其破坏机理及承载能力. 结果显示: CAC 梁的抗弯性能随着钢筋强度的提高而增强. 此外, 由于珊瑚骨料和海水中含有大量 Cl, 使得 CAC 梁中的普通钢筋极易发生锈蚀. 因此, 对于岛礁工程, 采用有机新涂层钢筋能延长 CAC 结构的有效服役寿命. 最后, 考虑钢筋锈蚀的影响, 建立了 CAC 梁的开裂弯矩(Mcr)、 极限弯矩(Mu)、 平均裂缝间距(lm)和最大裂缝宽度(ws)的计算模型.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAC:

Coral aggregate concrete

OAC:

Ordinary aggregate concrete

LAC:

Lightweight aggregate concrete

SG:

Slag

FA:

Fly ash

LPR:

Linear polarization resistance

EIS:

Electrochemical impedance spectroscopy

R p :

Polarization resistance

f y :

Yield strength of steel

f u :

Ultimate strength of steel

f cu :

Cube compressive strength of concrete

f c :

Axial tensile strength of concrete

f tk :

Tensile strength of concrete

f cm :

Flexural compressive strength of concrete

w s :

Maximum crack width

l m :

Average crack spacing

M cr :

Cracking moment

M u :

Ultimate moment

W o :

Elastic resistance moment

h x :

Section height of beam

π:

Steel ratio

ωsm :

Maximum section loss rate

ωs :

ean section loss rate

ω:

Mass loss rate α, α2, α3 Reduction coefficient

I 0 :

Inertia moment

ψ:

Influence coefficient

b :

Section width

y o :

Height of compression zone

h 0 :

Section effective height

n :

Ratio of elastic modulus

A s :

Steel sectional area in the tension zone

x :

Height in the compression zone

αc :

Crack width influence coefficient

c s :

Concrete cover thickness

Π:

Non-uniform coefficient of steel

d ep :

Steel equivalent diameter

σs :

Stress of steel

A te :

Section area of concrete

E s :

Elastic modulus of steel

References

  1. TANG Lu-ping. Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete [J]. Cement and Concrete Research, 2008, 38: 1092–1097. DOI: 10.1016/j.cemconres. 2008.03.008.

    Article  Google Scholar 

  2. LU Chun-hua, CUI Zhao-wei, LIU Rong-gui, LIU Qi-dong. Chloride diffusivity in flexural cracked Portland cement concrete and fly ash concrete beams [J]. Journal of Central South University, 2014, 21(9): 3682–3691. DOI: 10.1007/s11771-014-2351-3.

    Article  Google Scholar 

  3. DA Bo, YU Hong-fa, MA Hai-yan, TAN Yong-shan, MI Ren-jie, DOU Xue-mei. Chloride diffusion study of coral concrete in a marine environment [J]. Construction and Building Materials, 2016, 123: 47–58. DOI: 10.1016/ j.conbuildmat.2016.06.135.

    Article  Google Scholar 

  4. DA Bo, YU Hong-fa, MA Hai-yan, WU Zhang-yu. Reinforcement corrosion research based on electrochemical impedance spectroscopy for coral aggregate seawater concrete in a seawater immersion environment [J]. Journal of Testing and Evaluation, 2020, 48: 1537–1553. DOI: 10.1520/JTE20180197.

    Article  Google Scholar 

  5. DA Bo, YU Hong-fa, MA Hai-yan, WU Zhang-yu. Research on compression behavior of coral aggregate reinforced concrete columns under large eccentric compression loading [J]. Ocean Engineering, 2018, 155: 251–260. DOI: 10.1016/j.oceaneng.2018.02.037.

    Article  Google Scholar 

  6. AL-OSTA M A, ISA M N, BALUCH M H, RAHMAN M K. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete [J]. Construction and Building Materials, 2017, 134: 279–296. DOI: 10.1016/j.conbuildmat.2016.12.094.

    Article  Google Scholar 

  7. YU Yu-lin, YIN Shi-ping, NA Ming-wang. Bending performance of TRC-strengthened RC beams with secondary load under chloride erosion [J]. Journal of Central South University, 2019, 26(1): 196–206. DOI: 10.1007/s11771-019-3993-y

    Article  Google Scholar 

  8. RICK A E. Coral concrete at bikini atoll [J]. Concrete International, 1991, 13(1): 19–24. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id /3605.

    Google Scholar 

  9. WATTANACHAI P, OTSUKI N, SAITO T, NISHIDA T. A study on chloride ion diffusivity of porous aggregate concretes and improvement method [J]. Doboku Gakkai Ronbunshuu E, 2009, 65(1): 30–44. DOI: 10.2208/jsceje. 65.30.

    Article  Google Scholar 

  10. KAKOOEI S, AKIL H M, DOLATI A, ROUHI J. The corrosion investigation of rebar embedded in the fibers reinforced concrete [J]. Construction and Building Materials, 2012, 35: 564–570. DOI: 10.1016/j.conbuildmat.2012. 04.051.

    Article  Google Scholar 

  11. ZHANG Wen. Experimental study on reinforced coral aggregate concrete component [D]. Nanjing: Hohai University, 1995. (in Chinese)

    Google Scholar 

  12. WANG Fang, ZHA Xiao-xiong. Experimental and theoretical study on coral concrete filled steel tube [J]. Journal of Building Structures, 2013, 34(S1): 288–293. https://www.researchgate.net/publication/296185875.

    Google Scholar 

  13. JIN Yun-dong. Research on short- and long-term mechanical properties of BFRP bar reinforced marines and concrete beams [D]. Nanjing: Southeast University, 2016. (in Chinese)

    Google Scholar 

  14. DA Bo, YU Hong-fa, MA Hai-yan, ZHANG Ya-dong, ZHU Hai-wei, YU Qiang, YE Hai-min, JING Xian-shuang. Factors influencing durability of coral concrete structure in South China Sea [J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 254–261. DOI: 10.14062/j.issn.0454-5648.2016.02.11. (in Chinese)

    Google Scholar 

  15. YU Hong-fa, DA Bo, MA Hai-yan, ZHU Hai-wei, YU Qiang, YE Hai-min, JING Xian-shuang. Durability of concrete structures in tropical atoll environment [J]. Ocean Engineering, 2017, 135: 1–7. DOI: 10.1016/j.oceaneng. 2017.02.020.

    Article  Google Scholar 

  16. MA Hai-yan, DA Bo, YU Hong-fa, WU Zhang-yu. Research on flexural behavior of coral aggregate reinforced concrete beams [J]. China Ocean Engineering, 2018, 32(5): 593–604. DOI: 10.1007/sl3344-018-0061-6.

    Article  Google Scholar 

  17. DA Bo, YU Hong-fa, MA Hai-yan, TAN Yong-shan, MI Ren-jie, DOU Xue-mei. Experimental investigation of whole stress-strain curves of coral concrete [J]. Construction and Building Materials, 2016, 122: 81–89. DOI: 10.1016/j.conbuildmat.2016.06.064.

    Article  Google Scholar 

  18. YI Wei-jian, KUNNATH S K, SUN Xiao-dong, SHI Cai-jun, TANG Fu-jian. Fatigue behavior of reinforced concrete beams with corroded steel reinforcement [J]. ACI Structural Journal, 2010, 107: 526–533. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id /51663903.

    Google Scholar 

  19. OU Yu-chen, CHEN Hou-heng. Cyclic behavior of reinforced concrete beams with corroded transverse steel reinforcement [J]. Journal of Structural Engineering, 2014, 140(9): 1629–1635. DOI: 10.1061/(ASCE)ST.1943-54IX.0000932.

    Article  Google Scholar 

  20. ZHANG Wei-ping, ZHOU Bin-bin, GU Xiang-lin, DAI Hong-chao. Probability distribution model for cross-sectional area of corroded reinforcing steel bars [J]. Journal of Materials in Civil Engineering, 2014, 26: 822–832. DOI: 10.1061/(ASCE)MT.1943-5533.0000888.

    Article  Google Scholar 

  21. YUAN Ying-shu, JIA Fu-ping, CAI Yue. The structural behavior deterioration model for corroded reinforced concrete beams [J]. China Civil Engineering Journal, 2001, 34(3): 47–52, 96. DOI: 10.3321/j.issn:1000-131X.2001. 03.009.

    Google Scholar 

  22. DA Bo, YU Hong-fa, MA Hai-yan, ZHU Hai-wei, WU Zhang-yu, MEI Qi-quan. Influence of concrete strength grade to the shear behavior of coral aggregate reinforced concrete beam [J]. Scientia Sinica Technologica, 2019, 49(2): 212–222. DOI: 10.1360/N092018-00267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-fa Yu  (余红发) or Hai-yan Ma  (麻海燕).

Additional information

Foundation item: Projects(11832013, 51878350) supported by the National Natural Science Foundation of China; Project(B200201063) supported by the Fundamental Research Funds for the Central Universities, China; Project(BK20180433) supported by the Natural Science Foundation of Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, B., Yu, Hf., Ma, Hy. et al. Influence of steel corrosion to flexural behavior of coral aggregate concrete beam. J. Cent. South Univ. 27, 1530–1542 (2020). https://doi.org/10.1007/s11771-020-4388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4388-9

Keywords

关键词

Navigation