Skip to main content
Log in

Hydrogeochemical modelling of corrosive environment contributing to premature failure of anchor bolts in underground coal mines

中文导读地下煤矿锚杆(索)过早失效腐蚀环境的水文地球化学模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability. However, premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials, a moist and corrosive environment and tensile stress. In this paper, laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines. Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code. A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion, pH and pE trends in experimental data. The models showed that corrosion processes are inhibited by some natural environmental factors, because dissolved oxygen would cause more iron from the bolts to oxidize into solution. These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.

摘要

锚杆(索)被广泛应用于地下采矿和巷道掘进过程中以提高顶板稳定性. 由于锚固材料的腐蚀敏感性、 所处潮湿、 腐蚀环境以及拉伸应力的影响, 锚杆(索)的过早失效是地下开采工程中存在的重大安全隐患. 本文将实验室实验与水文地球化学模型相结合, 对地下煤矿水环境下锚杆(索)的腐蚀破坏进行了研究. 根据实验数据和矿井水水化学数据, 采用 PHREEQC 软件对锚杆(索)与矿井地下水和岩层材料间腐蚀反应进行了模拟分析. 建立了一系列的模型量化铁和碳元素反应量, 模拟了有氧和无氧条件下水环境中的化学反应, 得到各离子浓度、 pH 和随反应进度的变化趋势, 并与实验结果进行对比. 结果表明, 锚杆(索)的腐蚀受到某些自然环境因素的抑制, 因为水中溶解氧可以促进更多铁氧化. 通过水文地球化学模拟等手段, 阐明了锚杆(索)周边环境是影响其应力腐蚀开裂过程的重要因素.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. YAN Hong, HE Fu-lian, LI Lin-yue, FENG Rui-min, XING Peng-fei. Control mechanism of a cable truss system for stability of roadways within thick coal seams [J]. Journal of Central South University, 2017, 24(5): 1098–1110. DOI: 10.1007/s11771-017-3513-x.

    Article  Google Scholar 

  2. WANG Qi, LUAN Ying-cheng, JIANG Bei, LI Shu-cai, YU Heng-chang. Mechanical behaviour analysis and support system field experiment of confined concrete arches [J]. Journal of Central South University, 2019, 26(4): 970–983. DOI: 10.1007/s11771-019-4064-0.

    Article  Google Scholar 

  3. ZHAO Zeng-hui, GAO Xiao-jie, TAN Yun-liang, MA Qing. Theoretical and numerical study on reinforcing effect of rock-bolt through composite soft rock-mass [J]. Journal of Central South University, 2018, 25(10): 2512–2522. DOI: 10.1007/s11771-018-3932-3.

    Article  Google Scholar 

  4. VANDERMAAT D, SAYDAM S, HAGAN P C, CROSKY A. Examination of rockbolt stress corrosion cracking utilising full size rockbolts in a controlled mine environment [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 81: 86–95. DOI: 10.1016/j.ijrmms.2015. 11.007.

    Article  Google Scholar 

  5. LI Shu-cai, WANG Hong-tao, WANG Qi, JIANG Bei, WANG Fu-qi, GUO Nian-bo, LIU Wen-jiang, REN Yao-xi. Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress [J]. Journal of Central South University, 2016, 23(2): 440–448. DOI: 10.1007/s11771-016-3089-x.

    Article  Google Scholar 

  6. WANG Hui, ZHENG Peng-qiang, ZHAO Wen-juan, TIAN Hong-ming. Application of a combined supporting technology with U-shaped steel support and anchor-grouting to surrounding soft rock reinforcement in roadway [J]. Journal of Central South University, 2018, 25(5): 1240–1250. DOI: 10.1007/s11771-018-3821-9.

    Article  Google Scholar 

  7. KANG Hong-pu, WU Yong-zheng, GAO Fu-qiang, LIN Jian, JIANG Peng-fei. Fracture characteristics in rock bolts in underground coal mine roadways [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 105–112. DOI: 10.1016/j.ijrmms.2013.04.006.

    Article  Google Scholar 

  8. HADJIGEORGIOU J, DORION J, GHALI E. Support system performance under different corrosion conditions [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2008, 108(6): 359–365. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532008000600007/.

    Google Scholar 

  9. VANDERMAAT D, SAYDAM S, HAGAN P C, CROSKY A. Back-calculation of failure stress of rockbolts affected by stress corrosion cracking in underground coal mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 310–317. DOI: 10.1016/j.ijrmms.2017. 10.029.

    Article  Google Scholar 

  10. WU Sai-sai, CHEN Hong-hao, CRAIG P, RAMANDI H, TIMMS W, HAGAN P C, CROSKY A, HEBBLEWHITE B, SAYDAM S. An experimental framework for simulating stress corrosion cracking in cable bolts [J]. Tunnelling and Underground Space Technology, 2018, 76: 121–132. DOI: 10.1016/j.tust.2018.03.004.

    Article  Google Scholar 

  11. KOVAC J, ALAUX C, MARROW T J, GOVEKAR E, LEGAT A. Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel [J]. Corrosion Science, 2010, 52(6): 2015–2025. DOI: 10.1016/j.corsci.2010.02.035.

    Article  Google Scholar 

  12. TORIBIO J, VALIENTE A. Failure analysis of cold drawn eutectoid steel wires for prestressed concrete [J]. Engineering Failure Analysis, 2006, 13(3): 301–311. DOI: 10.1016/j.engfailanal.2005.03.003.

    Article  Google Scholar 

  13. GRAY P. Stress corrosion cracking of rock bolts [C]//Coal 1998: Coal Operator’ conference. University of Wollongong & the Australasian Institute of Mining and Metallurgy, 1998. https://ro.uow.edu.au/coal/258/.

    Google Scholar 

  14. WINZER N, ATRENS A, SONG G, GHALI E, DIETZEL W, KAINER K U, HORT N, BLAWERT C. A critical review of the stress corrosion cracking (SCC) of magnesium alloys [J]. Advanced Engineering Materials, 2005, 7(8): 659–693. DOI: 10.1002/adem.200500071.

    Article  Google Scholar 

  15. MA H, LIU Z, DU C, WANG H, LI X, ZHANG D, CUI Z. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corrosion Science, 2015, 100: 627–641. DOI: 10.1016/j.corsci.2015.08.039.

    Article  Google Scholar 

  16. WAN Hong-xia, DU Cui-wei, LIU Zhi-yong, SONG Dong-dong, LI Xiao-gang. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Engineering, 2016, 114: 216–223. DOI: 10.1016/j.oceaneng.2016.01.020.

    Article  Google Scholar 

  17. HAASE R J, HANKE L D. Alkaline carbonate SCC failures at a refinery [J]. Journal of Failure Analysis and Prevention, 2018, 18(1): 153–161. DOI: 10.1007/s11668-018-0391-y.

    Article  Google Scholar 

  18. CROSKY A, FABJANCZYK M, GRAY P, HEBBLEWHITE B. Premature rock bolt failure: Stage 2 [R]. Sydney, ACARP Project, 2004.

    Google Scholar 

  19. AZIZ N, CRAIG P, NEMCIK J, HAI F. Rock bolt corrosion An experimental study [J]. Mining Technology, 2014, 123(2): 69–77. DOI: 10.1179/1743286314Y.0000000060.

    Article  Google Scholar 

  20. CRAIG P, SERKAN S, HAGAN P C, HEBBLEWHITE B, VANDERMAAT D, CROSKY A, ELIAS E. Investigations into the corrosive environments contributing to premature failure of Australian coal mine rock bolts [J]. International Journal of Mining Science and Technology, 2016, 26(1): 59–64. DOI: 10.1016/j.ijmst.2015.11.011.

    Article  Google Scholar 

  21. VILLALBA E, ATRENS A. Hydrogen embrittlement and rock bolt stress corrosion cracking [J]. Engineering Failure Analysis, 2009, 16(1): 164–175. DOI: 10.1016/j.engfailanal. 2008.01.004.

    Article  Google Scholar 

  22. DE MEO D, DIYAROGLU C, ZHU N, OTERKUS E, SIDDIQ M A. Modelling of stress-corrosion cracking by using peridynamics [J]. International Journal of Hydrogen Energy, 2016, 41(15): 6593–6609. DOI: 10.1016/j.ijhydene.2016.02.154.

    Article  Google Scholar 

  23. ZHU Long-kui K, YAN Yu, LI Jin-xu, QIAO Li-jie, VOLINSKY A A. Stress corrosion cracking under low stress: Continuous or discontinuous cracks? [J]. Corrosion Science, 2014, 80: 350–358. DOI: 10.1016/j.corsci.2013.11.057.

    Article  Google Scholar 

  24. EQUEENUDDIN S M, TRIPATHY S, SAHOO P K, PANIGRAHI M K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, INDIA [J]. Journal of Geochemical Exploration, 2010, 105(3): 75–82. DOI: 10.1016/j.gexplo.2010.04.006.

    Article  Google Scholar 

  25. BANWART S A, MALMSTRÆM M E. Hydrochemical modelling for preliminary assessment of minewater pollution [J]. Journal of Geochemical Exploration, 2001, 74(1): 73–97. DOI: 10.1016/S0375-6742(01)00176-5.

    Article  Google Scholar 

  26. van STEMPVOORT D R, van der KAMP G. Modeling the hydrogeochemistry of aquitards using minimally disturbed samples in radial diffusion cells [J]. Applied Geochemistry, 2003, 18(4): 551–565. DOI: 10.1016/S0883-2927(02) 00152-X.

    Article  Google Scholar 

  27. JAKOBSEN R, COLD L. Geochemistry at the sulfate reductionmethanogenesis transition zone in an anoxic aquifer—A partial equilibrium interpretation using 2D reactive transport modeling [J]. Geochimica et Cosmochimica Acta, 2007, 71(8): 1949–1966. DOI: 10.1016/j.gca.2007.01.013.

    Article  Google Scholar 

  28. TIMMS W, HENDRY M. Quantifying the impact of cation exchange on long-term solute transport in a clay-rich aquitard [J]. Journal of hydrology, 2007, 332(1, 2): 110–122. DOI: 10.1016/j.jhydrol.2006.06.025.

    Article  Google Scholar 

  29. BOZAU E, van BERK W. Hydrogeochemical modeling of deep formation water applied to geothermal energy production [J]. Procedia Earth and Planetary Science, 2013, 7: 97–100. DOI: 10.1016/j.proeps.2013.03.006.

    Article  Google Scholar 

  30. KLAPPER H, BARTETZKO A, LEHR J. Hydrogeochemical modelling to monitor scaling and corrosion during geothermal energy production in the north german basin [C]//CORROSION 2017. NACE International, 2017.

    Google Scholar 

  31. PEÁA J, TORRES E, TURRERO M J, ESCRIBANO A, MARTÍN P L. Kinetic modelling of the attenuation of carbon steel canister corrosion due to diffusive transport through corrosion product layers [J]. Corrosion Science, 2008, 50(8): 2197–2204. DOI: 10.1016/j.corsci.2008.06.004.

    Article  Google Scholar 

  32. CRAIG P, AZIZ N I. Shear testing of 28 mm hollow strand “TG” cable bolt [C]//29th International Conference on Ground Control in Mining. Morgantown, WEST Virginia, 2010.

    Google Scholar 

  33. PARKHURST D L, APPELO C A J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations [M]. 1999.

    Google Scholar 

  34. VANDERMAAT D. Stress corrosion cracking of rockbolts: a laboratory based approach utilising a controlled mine envrionment [D]. Sydney, Australia: University of New South Wales, 2014.

    Google Scholar 

  35. LIU Hong-wei, CHENG Y Frank. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions [J]. Corrosion Science, 2018, 133: 178–189. DOI: 10.1016/j.corsci.2018. 01.029.

    Article  Google Scholar 

  36. STIPANIČEV M, ROSAS O, BASSEGUY R, TURCU F. Electrochemical and fractographic analysis of microbiologically assisted stress corrosion cracking of carbon steel [J]. Corrosion Science, 2014, 80: 60–70. DOI: 10.1016/j.corsci.2013.11.009.

    Article  Google Scholar 

  37. SAND W, GEHRKE T. Microbially influenced corrosion of steel in aqueous environments [J]. Reviews in Environmental Science and Biotechnology, 2003, 2(2-4): 169–176. DOI: 10.1023/B:RESB.0000040468.88570.4e.

    Article  Google Scholar 

  38. APPELO C A J, POSTMA D. Geochemistry, groundwater and pollution [M]. 2nd Ed. CRC Press, 2004.

    Book  Google Scholar 

  39. BIEZMA M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. International Journal of Hydrogen Energy, 2001, 26(5): 515–520. DOI: 10.1016/S0360-3199(00)00091-4.

    Article  Google Scholar 

  40. JAKOBSEN R. Redox microniches in groundwater: A model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis [J]. Water Resources Research, 2007, 43(12). DOI: 10.1029/2006WR005663.

    Google Scholar 

  41. ENNING D, GARRELFS J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Applied and Environmental Microbiology, 2014, 80(4): 1226–1236. DOI: 10.1128/AEM.02848-13.

    Article  Google Scholar 

  42. WU Sai-sai, CHEN Hong-hao, RAMANDI H L, HAGAN P C, CROSKY A, SAYDAM S. Effects of environmental factors on stress corrosion cracking of cold-drawn highcarbon steel wires [J]. Corrosion Science, 2017, 132: 234–243. DOI: 10.1016/j.corsci.2017.12.014.

    Article  Google Scholar 

  43. CHOU Chen-lin. Sulfur in coals: A review of geochemistry and origins [J]. International Journal of Coal Geology, 2012, 100: 1–13. DOI: 10.1016/j.coal.2012.05.009.

    Article  Google Scholar 

  44. STACKEBRANDT E, STAHL D A, DEVEREUX R. Taxonomic relationships. in In Sulfate-reducing bacteria [M]. Springer, 1995: 49–87. DOI: 10.1007/978-1-4899-1582-5_3.

    Book  Google Scholar 

  45. DINH H T, KUEVER J, MUÏMANN M, HASSEL A W, STRATMANN M, WIDDEL F. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427(6977): 829–832. DOI: 10.1038/nature02321.

    Article  Google Scholar 

  46. GU Ting-yue. New understandings of biocorrosion mechanisms and their classifications [J]. Journal of Microbial & Biochemical Technology, 2012, 4(4): iii-vi. DOI: 10.4172/1948-5948.1000e107.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to Patrick Moore for his contributions throughout the experiment part. Many thanks to Prof. Serkan Saydam, Mark Whelan, WU Sai-sai, and CHEN Hong-hao for their helpful discussion and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Timms.

Additional information

Foundation item: Project(140100153) supported by Australian Research Council Linkage Grant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Timms, W. Hydrogeochemical modelling of corrosive environment contributing to premature failure of anchor bolts in underground coal mines. J. Cent. South Univ. 27, 1599–1610 (2020). https://doi.org/10.1007/s11771-020-4393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4393-z

Keywords

关键词

Navigation