Skip to main content
Log in

Growth of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate

含硼铁精矿还原焙烧过程中金属铁颗粒的生长规律

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated. The size of the metallic iron particles was quantitatively measured via optical image analysis with consideration of size calibration and weighted ratio of image numbers in the core, middle and periphery zones of cross-section of pellets. In order to guarantee the measurement accuracy 54 images were captured in total for each specimen, with a weighted ratio of 1:7:19 with respect to the core, middle and periphery section of the cross-section of pellets. Increasing reduction temperature and time is favorable to the growth of metallic iron particles. Based on the modification of particle size measurement, in terms of time (t) and temperature (T) a predicting model of metallic iron particle size (D), was established as: D=125-0.112t-0.2352T-5.355×10-4t2+2.032× 10-4tT +1.134×10-4T2.

摘要

研究了不同还原条件下含硼铁精矿在焙烧过程中金属铁颗粒的生长规律. 采用光学显微镜获取还原球团的数字图像, 考虑到球团不同部位金属铁颗粒生长情况的差异, 采用回归拟合分析得到内、 中、 外区域的权重比例为 1:7:19, 每个样品根据此权重比例共获取 54 张图像. 基于修正后的金属铁颗粒尺寸的测定方法, 建立了铁颗粒平均粒径D (μm)与还原温度 T (°C)、 时间 t (min)之间的回归模型: D=125−0.112t−0.2352T−5.355×10−4t2+2.032×10−4tT+1.134×10−4T2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAO P, YU J W, HAN Y X, ZHOU M G. Mineralogical study of boron-bearing iron concentrate ore [J]. Journal of Northeastern University, 2015, 36(4): 581–584. DOI: 10.3969/j.issn.1005-3026. 2015.04. 027. (in Chinese)

    Google Scholar 

  2. LIU R, XUE X X, LIU X, WANG D S, FENG C, HUANG D W. Progress on China's boron resource and the current situation of boron-bearing materials [J]. Bulletin of the Chinese Ceramic Society, 2006, 25(6): 102–107. DOI: 10.16552/j.cnki.issn1001-1625.2006.06.025. (in Chinese)

    Google Scholar 

  3. ZHAO Q J, WANG C R, WANG C R, LIAN X Q. New process of multipurpose utilization of ludwigte [J]. Journal of Northeastern University (Natural Science), 1996, 17(6): 588–592. DOI: http://www.cnki.com.cn/Article/CJFDTotal-DBDX606.002.htm. (in Chinese)

    Google Scholar 

  4. CAO Z, CAO Y D, GUI F. Research status and progress of the exploitation and utilization of Paigeite ore [J]. Multipurpose Utilization of Mineral Resources, 2013(2): 17–20. DOI:10.3969/j.issn.1000-6532.2013.02.005. (in Chinese)

    Google Scholar 

  5. WANG G, XUE Q G, WANG J S. Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation [J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(9): 1000–1009. DOI: 10.1007/s12613-018-1650-3.

    Article  Google Scholar 

  6. WANG Guang, WANG Jing-song, XUE Qing-guo. Properties of boron-rich slag separated from boron-bearing iron concentrate [J]. Journal of Central South University, 2018, 25: 783–794. DOI: 10.1007/s11771-018-3783-y.

    Article  Google Scholar 

  7. ZHANG X, LI G H, YOU J X, WANG J, LUO J, DUAN J, ZHANG T, PENG Z W, RAO M J, JIANG T. Extraction of boron from ludwigite ore: Mechanism on soda-ash roasting of Lizardite and Szaibelyite [J]. Minerals, 2019, 2019(9): 533. DOI: https://doi.org/10.3390/min9090533.

    Article  Google Scholar 

  8. LIU G S, STREZOV V, LUCAS J A, WIBBERLEY L J. Thermal investigations of direct iron ore reduction with coal [J]. Thermochimica Acta, 2004, 410(1, 2): 133–140. DOI: 10.1016/s0040-6031(03)00398-8.

    Article  Google Scholar 

  9. PARISI D R, LABORDE M A. Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore [J]. Chemical Engineering Journal, 2004, 104(1-3): 35–43. DOI: 10.1016/j.cej.2004.08.001.

    Article  Google Scholar 

  10. RAO M, LI G, ZHANG X, LUO J, PENG Z, JIANG T. Reductive roasting of nickel laterite ore with sodium sulfate for Fe-Ni production. Part I: Reduction/sulfidation characteristics [J]. Separation Science and Technology, 2016, 51(8): 1408–1420. DOI:10.1080/01496395.2016.1162173.

    Article  Google Scholar 

  11. LI G, YOU Z, ZHANG Y, RAO M, WEN P, GUO Y, JIANG T. Synchronous volatilization of Sn, Zn, and As, and preparation of direct reduction iron (DRI) from a complex iron concentrate via CO reduction [J]. JOM Journal of the Minerals Metals and Materials Society, 2014, 66(9): 1701–1710. DOI: 10.1007/s11837-013-0852-4.

    Article  Google Scholar 

  12. AL-THYABAT S, MILES N J. An improved estimation of size distribution from particle profile measurements [J]. Powder Technology, 2006, 166(3): 152–160. DOI: 10.1016/j.powtec.2006.05.008.

    Article  Google Scholar 

  13. DONSKOI E, SUTHERS S P, FRADD S B, YOUNG J M, CAMPBELL J J, RAYNLYN T D, CLOUT J M F. Utilization of optical image analysis and automatic texture classification for iron ore particle characterisation [J]. Minerals Engineering, 2007, 20(5): 461–471. DOI: 10.1016/j.mineng.2006.12.005.

    Article  Google Scholar 

  14. HUKKANEN E J, BRAATZ R D. Measurement of particle size distribution in suspension polymerization using in situ laser backscattering [J]. Sensors and Actuators B-Chemical, 2003, 96(1, 2): 451–459. DOI: 10.1016/s0925-4005(03)00600-2.

    Article  Google Scholar 

  15. KOH T K, MILES N J, MORGAN S P, HAYES- GILL B R. Improving particle size measurement using multi-flash imaging [J]. Minerals Engineering, 2009, 22(6): 537–543. DOI: 10.1016/j.mineng.2008.12.005.

    Article  Google Scholar 

  16. SUN Y, HAN Y, GAO P, YU J. Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore [J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(4): 249–257. DOI: 10.1080/08827508.2014.955611.

    Article  Google Scholar 

  17. MAITI A, CHAKRAVARTY D, BISWAS K, HALDER A. Development of a mass model in estimating weight-wise particle size distribution using digital image processing [J]. International Journal of Mining Science and Technology, 2017, 27(3): 435–443. DOI: 10.1016/j.ijmst.2017.03.015.

    Article  Google Scholar 

  18. DONSKOI E, RAYNLYN T D, POLIAKOV A. Image analysis estimation of iron ore particle segregation in epoxy blocks [J]. Minerals Engineering, 2018, 120: 102–109. DOI: 10.1016/j.mineng.2018.02.024.

    Article  Google Scholar 

  19. LUO L, ZHANG H. Process mineralogy and characteristic associations of iron and phosphorus-based minerals on oolitic hematite [J]. Journal of Central South University, 2017, 24(9): 1959–1967. DOI:10.1007/s11771-017-3604-8.

    Article  Google Scholar 

  20. LI G, LIANG B, RAO M, ZHANG Y, JIANG T. An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore [J]. Minerals Engineering, 2014, 56: 57–60. DOI: 10.1016/j.mineng. 2013.10.030.

    Article  Google Scholar 

  21. LIANG B, LI G, RAO M, PENG Z, ZHANG Y, JIANG T. Water leaching of boron from soda-ash-activated ludwigite ore [J]. Hydrometallurgy, 2017, 167: 101–106. DOI: 10.1016/j.hydromet.2016.11.004.

    Article  Google Scholar 

  22. LI G, FANG L, ZHANG X, LIANG B, RAO M, PENG Z, JIANG T. Utilization of the MgO-rich residue originated from Ludwigite ore: Hydrothermal synthesis of MHSH whiskers [J]. Minerals, 2017, 7(8): 138–145. DOI: 10.3390/min7080138.

    Article  Google Scholar 

  23. CHAYES F. On the bias of grain-size measurements made in thin section [J]. Journal of Geology, 1950, 58(2): 156–160. DOI: 10.1086/625716.

    Article  Google Scholar 

  24. CUZZI J N, OLSON D M. Recovering 3D particle size distributions from 2D sections [J]. Meteoritics & Planetary Science, 2016, 52(3): 532–545. DOI:10.1111/maps.12812.

    Article  Google Scholar 

  25. NAPPER D H. Particle growth in suspensions [J]. Journal of Colloid & Interface Science, 1974, 46(1): DOI: 10.1016/0021-9797(74)90040-X.

    Google Scholar 

  26. SUN Y S, HAN Y X, LI Y F, LI Y J. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore [J]. International Journal of Minerals Metallurgy & Materials, 2017, 24(2): 123–129. DOI: 10.1007/s12613-017-1386-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-jun Rao  (饶明军).

Additional information

Foundation item: Project(51804346) supported by the National Natural Science Foundation of China; Project(2019JJ50767) supported by the Natural Science Foundation of Hunan Province, China; Project(KY [2017]125) supported by Youth Foundation of Guizhou Education Department, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Gh., Rao, Mj. et al. Growth of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate. J. Cent. South Univ. 27, 1484–1494 (2020). https://doi.org/10.1007/s11771-020-4384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4384-0

Key words

关键词

Navigation