Skip to main content
Log in

Temperature field evolution and heat transfer during continual local induction cladding

连续移动局部感应熔覆过程中的温度场演变和热量传递

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study. A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes. The novel inductor is designed for cladding of curved surfaces. The modeling reliability is verified by the temperature measurements. The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied. Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures. The results show that a good metallurgical bond can be formed between the cladding layer and substrate. The melting rate gradually falls from the top of the cladding layer to the substrate, and the grain size in the substrate gradually rises. The heat affected zone is relatively small compared to integral heating.

摘要

本文研究了连续运动感应熔覆层的温度场演变和热影响区的深度, 建立了点式连续移动感应熔覆的三维有限元模型以研究固定和移动感应熔覆模型的温度分布, 设计了一种适用于曲面熔覆的新感应器, 通过温度测量验证了模型的可靠性. 研究了工艺参数对最高温度的影响和热量的产生与传递. 对熔化速率进行了定量计算来验证温度的分布和显微组织的关系. 结果表明, 熔覆层与基体之间可形成良好的冶金结合, 从熔覆层顶部到基体熔化速率逐渐降低, 基体中的晶粒尺寸逐渐增大. 与整体加热相比, 连续移动局部感应熔覆热影响区相对较小.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NAAR R, BAY F. Numerical optimisation for induction heat treatment processes [J]. Applied Mathematical Modelling, 2013, 37(4): 2074–2085. DOI: 10.1016/j.apm. 2012.04.058.

    Article  MathSciNet  MATH  Google Scholar 

  2. GAO Kai, WANG Zhou, QIN Xun-peng, ZHU Sheng-xiao. Numerical analysis of 3D spot continual induction hardening on curved surface of AISI 1045 steel [J]. Journal of Central South University, 2016, 23(5): 1152–1162. DOI: 10.1007/s11771-016-0365-8.

    Article  Google Scholar 

  3. FANG Jian-jun, LI Zhu-xin, SHI Yao-wu. Microstructure and properties of TiB2-containing coatings prepared by arc spraying [J]. Applied Surface Science, 2008, 254(13): 3849–3858. DOI: 10.1016/j.apsusc.2007.12.034.

    Article  Google Scholar 

  4. HAO Ming-zhong, SUN Yu-wen. A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach [J]. International Journal of Heat and Mass Transfer, 2013, 64: 352–360. DOI: 10.1016/j.ijheatmasstransfer.2013.04.050.

    Article  Google Scholar 

  5. ZHOU Sheng-feng, ZHANG Tian-you, XIONG Zheng, DAI Xiao-qin, WU Chao, SHAO Zhi-shong. Investigation of Cu-Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding [J]. Optics & Laser Technology, 2014, 59: 131–136. DOI: 10.1016/j.optlastec. 2013.12.013.

    Article  Google Scholar 

  6. HAN Yi, WEN Huai-yu, YU En-lin. Study on electromagnetic heating process of heavy-duty sprockets with circular coils and profile coils [J]. Applied Thermal Engineering, 2016, 100: 861–868. DOI: 10.1016/j.applthermaleng.2016.01.161.

    Article  Google Scholar 

  7. LI Cheng-kai, LIU Yan-cong, SHI Yong-jun, YI Peng, XIE Jiang-hao, MA Xiao-li, CUI Lan-fang. Modeling of high-frequency induction heating surface cladding process: numerical simulation, experimental measurement and validation [C]// Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation. Paris: Atlantis Press, 2016. DOI: 10.2991/978- 94-6239-148-2_74.

    Google Scholar 

  8. GAO Kai, QIN Xun-peng, WANG Zhou, ZHU Sheng-xiao, GAN Zhong-ming. Effect of magnetizer geometry on the spot induction heating processc [J]. Journal of Materials Processing Technology, 2016, 231: 125–136. DOI: 10.1016/j.jmatprotec.2015.12.028.

    Article  Google Scholar 

  9. ZHU Zhen-hua, QIN Xun-peng, GAO Kai, CHEN Xu-liang. Design and research on the spot inductor for obtaining local high temperature rapidly [J]. International Communications in Heat and Mass Transfer, 2018, 96: 122–129. DOI: 10.1016/j.icheatmasstransfer.2018.06.002.

    Article  Google Scholar 

  10. CHEN Xu-liang, QIN Xun-peng, ZHU Zhen-hua, GAO Kai. Microstructural evolution and wear properties of the continual local induction cladding NiCrBSi coatings [J]. Journal of Materials Processing Technology, 2018, 262: 257–268. DOI: 10.1016/j.jmatprotec.2018.05.034.

    Article  Google Scholar 

  11. SANTHANAKRISHNAN S, KONG F, KOVACEVIC R. An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding [J]. Journal of Materials Processing Technology, 2011, 211(7): 1247–1259. DOI: 10.1016/j.jmatprotec.2011.02.006.

    Article  Google Scholar 

  12. HÆMBERG D, PETZOLD T, ROCCA E. Analysis and simulations of multifrequency induction hardening [J]. Nonlinear Analysis: Real World Applications, 2015, 22: 84–97. DOI: 10.10 16/j.nonrwa.2014.07.007.

    Article  MathSciNet  MATH  Google Scholar 

  13. MAO Yu-lian, LI Cheng-kai. Modeling and optimization of multi-dimension induction cladding model [J]. Modern Manufacturing Technology and Equipment, 2015 (3): 1–4. DOI: 10.16107/j.cnki.mmte.2015.0081. (in Chinese)

    Google Scholar 

  14. SUN Rui, SHI Yong-jun, PEI Zheng-fu, LI Qi, WANG Rui-hai. Heat transfer and temperature distribution during high-frequency induction cladding of 45 steel plate [J]. Applied Thermal Engineering, 2018, 139: 1–10. DOI: 10.1016/j.ap plthermaleng.2018.04.100.

    Article  Google Scholar 

  15. BIDRON G, DOGHRI A, MALOT T, FOURNIER F. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating [J]. Journal of Materials Processing Tech, 2020, 277: 116461. DOI: 10.1016/j.jmatprotec.2019.116461.

  16. LIU Hua-ming, LI Ming-bo, QIN Xun-peng, HUANG Song, HONG Feng. Numerical simulation and experimental analysis of wide-beam laser cladding [J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4): 237–249. DOI: 10.1007/s00170-018-2740-0.

    Article  Google Scholar 

  17. YU Jing, SONG Bo. Effects of heating time on the microstructure and properties of an induction cladding coating [J]. Results in Physics, 2018, 11: 212–218. DOI: 10.1016/j.rinp.2018.09.010.

    Article  Google Scholar 

  18. YU Jing, SONG Bo. Friction and wear behavior of a Ni-based alloy coating fabricated using a multistep induction cladding technique [J]. Results in Physics, 2018, 11: 105–111. DOI: 10.1016/j.rinp.2018.08. 049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-peng Qin  (秦训鹏).

Additional information

Foundation item: Project(51575415) supported by the National Natural Science Foundation of China; Project(2016CFA077) supported by the Natural Science Foundation of Hubei Province of China; Project(2018-YS-026) supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Sy., Qin, Xp., Zhang, Jp. et al. Temperature field evolution and heat transfer during continual local induction cladding. J. Cent. South Univ. 27, 1572–1586 (2020). https://doi.org/10.1007/s11771-020-4391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4391-1

Keywords

关键词

Navigation