Skip to main content
Log in

Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The evolution of oxide inclusions during isothermal heating of 18Cr-8Ni stainless steel with yttrium addition at temperatures of 1273 to 1573 K was investigated systematically. Homogeneous spherical Al-Y-Si(-Mn-Cr) oxide inclusions were observed in as-cast steel. After heating, most of the homogeneous inclusions were transformed into heterogeneous inclusions with Y-rich and Al-rich parts, even though some homogeneous oxide particles were still observed at 1273 and 1573 K. With the increase in heating temperature, more large-sized inclusions were formed. The shape of the inclusions also changed from spherical to irregular. The maximum transformation temperature of inclusions was determined to be 1373 K. The evolution mechanism of inclusions during heating was proposed to be the combined effect of the (i) internal transformation of inclusions due to the crystallization of glassy oxide and (ii) interfacial reaction between inclusions and steel matrix. Meanwhile, the internal transformation of inclusions was considered to be the main factor at heating temperatures less than 1473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee, Formation and modification of MgO·Al2O3-based inclusions in alloy steels, Metall. Mater. Trans. B, 43(2012), No. 4, p. 731.

    Article  CAS  Google Scholar 

  2. J.H. Park and H. Todoroki, Control of MgO·Al2O3 spinel inclusions in stainless steels, ISIJ Int., 50(2010), No. 10, p. 1333.

    Article  CAS  Google Scholar 

  3. J.Y. Choi, S.K. Kim, Y.B. Kang, and H.G. Lee, Compositional evolution of oxide inclusions in austenitic stainless steel during continuous casting, Steel Res. Int., 86(2015), No. 3, p. 284.

    Article  CAS  Google Scholar 

  4. J.H. Park, S.B. Lee, and D.S. Kim, Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment, Metall. Mater. Trans. B, 36(2005), No. 1, p. 67.

    Article  Google Scholar 

  5. C. Gu, Y.P. Bao, P. Gan, M. Wang, and J.S. He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 623.

    Article  CAS  Google Scholar 

  6. R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178.

    Article  CAS  Google Scholar 

  7. A. Vahed and D.A.R. Kay, Thermodynamics of rare earths in steelmaking, Metall. Trans. B, 7(1976), No. 3, p. 375.

    Article  Google Scholar 

  8. P.E. Waudby, Rare earth additions to steel, Int. Met. Rev., 23(1978), No. 1, p. 74.

    Article  CAS  Google Scholar 

  9. Q.L. Li, H.R. Zhang, M. Gao, J.P. Li, T.X. Tao, and H. Zhang, Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 696.

    Article  CAS  Google Scholar 

  10. J.Z. Gao, P.X. Fu, H.W. Liu, and D.Z. Li, Effects of rare earth on the microstructure and impact toughness of H13 steel, Metals, 5(2015), No. 1, p. 383.

    Article  CAS  Google Scholar 

  11. J. Lan, J.J. He, W. Ding, Q.D. Wang, and Y.P. Zhu, Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2Mo-1.0V steel, ISIJ Int., 40(2000), No. 12, p. 1275.

    Article  CAS  Google Scholar 

  12. S.T. Kim, S.H. Jeon, I.S. Lee, and Y.S. Park, Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel—Part 1, Corros. Sci., 52(2010), No. 6, p. 1897.

    Article  CAS  Google Scholar 

  13. S.K. Kwon, J.S. Park, and J.H. Park, Influence of refractory-steel interfacial reaction on the formation behavior of inclusions in Ce-containing stainless steel, ISIJ Int., 55(2015), No. 12, p. 2589.

    Article  CAS  Google Scholar 

  14. S.J. Kim, K.M. Ryu, and M.S. Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 415.

    Article  CAS  Google Scholar 

  15. A. Katsumata and H. Todoroki, Effect of rare earth metal on inclusion composition in molten stainless steel, Iron Steelmaker, 29(2002), No. 7, p. 51.

    CAS  Google Scholar 

  16. T. Dan and K. Gunji, Deoxidation Characteristics and shape modification of deoxidation products with Al-Ce and Al-Y complex deoxidizers, Tetui-tto-Hagant, 68(1982), No. 14, p. 1915.

    Article  CAS  Google Scholar 

  17. Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jiang, and C. Peng, Inclusions modification in heat resistant steel containing rare earth elements, Ironmaking Steelmaking, 45(2018), No. 1, p. 76.

    Article  Google Scholar 

  18. Y.D. Li, C.J. Liu, T.S. Zhang, M.F. Jiang, and C. Peng, Liquid inclusions in heat-resistant steel containing rare earth elements, Metall. Mater. Trans. B, 48(2017), No. 2, p. 956.

    Article  CAS  Google Scholar 

  19. M. Nabeel, A. Karasev, and P. Jönsson, Formation and growth mechanism of clusters in liquid REM-alloyed stainless steels, ISIJ Int., 55(2015), No. 11, p. 2358.

    Article  CAS  Google Scholar 

  20. Y.Y. Bi, A.V. Karasev, and P.G. Jönsson, Three dimensional evaluations of REM clusters in stainless steel, ISIJ Int., 54(2014), No. 6, p. 1266.

    Article  CAS  Google Scholar 

  21. I. Takahashi, T. Sakae, and T. Yoshida, Changes of the nonmetallic inclusion by heating, Tetsu-to-Hagané, 53(1967), No. 3, p. 350.

    Article  Google Scholar 

  22. H. Shibata, T. Tanaka, K. Kimura, and S. Kitamura, Composition change in oxide inclusions of stainless steel by heat treatment, Ironmaking Steelmaking, 37(2010), No. 7, p. 522.

    Article  CAS  Google Scholar 

  23. H. Shibata, K. Kimura, T. Tanaka, and S.Y. Kitamura, Mechanism of change in chemical composition of oxide inclusions in Fe-Cr Alloys deoxidized with Mn and Si by heat treatment at 1473 K, ISIJ Int., 51(2011), No. 12, p. 1944.

    Article  CAS  Google Scholar 

  24. Y. Ren, L.F. Zhang, and P.C. Pistorius, Transformation of oxide inclusions in type 304 stainless steels during heat treatment, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2281.

    Article  CAS  Google Scholar 

  25. M.G. Li, H. Matsuura, and F. Tsukihashi, Evolution of Al-Ti oxide inclusion during isothermal heating of Fe-Al-Ti Alloy at 1573 K (1300°C), Metall. Mater. Trans. B, 48(2017), No. 3, p. 1915.

    Article  CAS  Google Scholar 

  26. M.G. Li, H. Matsuura, and F. Tsukihashi, Time-dependent evolution of Ti-bearing oxide inclusions during isothermal holding at 1573 K (1300°C), Metall. Mater. Trans. A, 50(2019), No. 2, p. 863.

    Article  CAS  Google Scholar 

  27. X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, and H. Matsuura, An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding, Metall. Mater. Trans. B, 49(2018), No. 2, p. 481.

    Article  CAS  Google Scholar 

  28. X.D. Zou, J.C. Sun, H. Matsuura, and C. Wang, In situ observation of the nucleation and growth of ferrite laths in the heat-affected zone of EH36-Mg shipbuilding steel subjected to different heat inputs, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2168.

    Article  CAS  Google Scholar 

  29. J.B. Yan, Y.M. Gao, L. Liang, Z.Z. Ye, Y.F. Li, W. Chen, and J.J. Zhang, Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K, Corros. Sci., 53(2011), No. 1, p. 329.

    Article  CAS  Google Scholar 

  30. L. Chen, X.C. Ma, L.M. Wang, and X.N. Ye, Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel, Mater. Des., 32(2011), No. 4, p. 2206.

    Article  CAS  Google Scholar 

  31. Y. Murakami and H. Yamamoto, Phase equilibria in Al2O3-Y2O3-SiO2 system and phase separation and crystallization behavior of glass, J. Ceram. Soc. Jpn., 99(1991), No. 1147, p. 215.

    Article  CAS  Google Scholar 

  32. S. Ahmad, T. Ludwig, M. Herrmann, M.M. Mahmoud, W. Lippmann, and H.J. Seifert, Phase evaluation during high temperature long heat treatments in the Y2O3-Al2O3-SiO2 system, J. Eur. Ceram. Soc., 34(2014), No. 15, p. 3835.

    Article  CAS  Google Scholar 

  33. S. Ahmad, M. Herrmann, M.M. Mahmoud, H. Leiste, W. Lippmann, and H.J. Seifert, Crystallisation studies of RE2O3-Al2O3-SiO2 glasses under long heat-treatment conditions, J. Alloys Compd., 688(2016), Part B, p. 762.

    Article  CAS  Google Scholar 

  34. U. Kolitsch, H.J. Seifert, T. Ludwig, and F. Aldinger, Phase equilibria and crystal chemistry in the Y2O3-Al2O3-SiO2 system, J. Mater. Res., 14(1999), No. 2, p. 447.

    Article  CAS  Google Scholar 

  35. R. Harrysson and P. Vomacka, Glass formation in the system Y2O3-Al2O3-SiO2 under conditions of laser melting, J. Eur. Ceram. Soc., 14(1994), No. 4, p. 377.

    Article  CAS  Google Scholar 

  36. M. Herrmann, W. Lippmann, and A. Hurtado, Y2O3-Al2O3-SiO2-based glass-ceramic fillers for the laser-supported joining of SiC, J. Eur. Ceram. Soc., 34(2014), No. 8, p. 1935.

    Article  CAS  Google Scholar 

  37. W. Wisniewski, A. Keshavarzi, T. Zscheckel, and C. Rüssel, EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α-and β-Y2Si2O7, J. Aloys. Compd., 699(2017), p. 832.

    Article  CAS  Google Scholar 

  38. Q.Y. Han, C.X. Xiang, Y.C. Dong, S.F. Yang, and D. Chen, Equilibria between the rare earth elements, oxygen and sulfur, in molten iron, Metall. Mater. Trans. B, 19(1988), No. 3, p. 409.

    Article  Google Scholar 

  39. D.P. Zhan, G.X. Qiu, Z.H. Jiang, and H.S. Zhang, Effect of yttrium and titanium on inclusions and the mechanical properties of 9Cr RAFM steel fabricated by vacuum melting, Steel Res. Int., 88(2017), No. 12, art. No. 1700159.

  40. F. Ishii and S. Banya, Equilibrium between yttrium and oxygen in liquid iron and nickel, ISIJ Int., 35(1995), No. 3, p. 280.

    Article  CAS  Google Scholar 

  41. W.G. Seo, W.H. Han, J.S. Kim, and J.J. Pak, Deoxidation equilibria among Mg, Al and O in liquid iron in the presence of MgO·Al2O3 spinel, ISIJ Int., 43(2003), No. 2, p. 201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51574190 and 51734003), the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-18-009C1), and the China Scholarship Council (No. 201806460049). The authors would also like to thank Prof. Simon N. Lekakh at Missouri University of Science and Technology for his guidance on this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-feng Yang or Jing-she Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xl., Yang, Sf., Li, Js. et al. Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition. Int J Miner Metall Mater 27, 754–763 (2020). https://doi.org/10.1007/s12613-019-1935-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1935-1

Keywords

Navigation