Skip to main content
Log in

A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A simple and novel technique for the preparation of anatase TiO2 nanopowders using natural ilmenite (FeTiO3) as the starting material is reported. Digesting ilmenite with concentrated H3PO4 under refluxing conditions yields a white α-titanium bismonohydrogen orthophosphate monohydrate (TOP), Ti(HPO4)2·H2O, which can be easily isolated via gravity separation from unreacted ilmenite. The addition of ammonia to the separated TOP followed by calcination at 500°C completes the preparation of anatase TiO2. Calcination at temperatures above 800°C converts the anatase form of TiO2 to the stable rutile phase. The removal of iron from ilmenite during the commercial production of synthetic TiO2 is problematic and environmentally unfriendly. In the present study, the removal of iron was found to be markedly simple due to the high solubility of iron phosphate species in concentrated H3PO4 with the precipitation of TOP. The titanium content of the prepared samples on metal basis with silica and phosphorous as major impurities was over 90%. Prepared TiO2 samples were characterized using X-ray fluorescence, Fourier-transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, and X-ray diffraction analyses. The photocatalytic potentials of the commercial and as-prepared TiO2 samples were assessed by the photodegradation of rhodamine B dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A.F. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford, 2012.

    Google Scholar 

  2. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, Elsevier Science, Amsterdam, 2012.

    Google Scholar 

  3. X.Z. Ding, X.H. Liu, and Y.Z. He, Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders, J. Mater. Sci. Lett., 15(1996), No. 20, p. 1789.

    Article  CAS  Google Scholar 

  4. K. Sabyrov, N.D. Burrows, and R.L. Penn, Size-dependent anatase to rutile phase transformation and particle growth, Chem. Mater., 25(2013), No. 8, p. 1408.

    Article  CAS  Google Scholar 

  5. J.G. Li, T. Ishigaki, and X.D. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties, J. Phys. Chem. C, 111(2007), No. 13, p. 4969.

    Article  CAS  Google Scholar 

  6. D.A.H. Hanaor and C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46(2011), No. 4, p. 855.

    Article  CAS  Google Scholar 

  7. G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers, and J.M. Seakins, The Raman spectrum of brookite, TiO2 (Pbca, Z = 8), J. Raman Spectrosc., 26(1995), No. 1, p. 57.

    Article  CAS  Google Scholar 

  8. J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D.Y. Luan, S. Madhavi, F.Y.C. Boey, L.A. Archer, and X.W. Lou, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, J. Am. Chem. Soc., 132(2010), No. 17, p. 6124.

    Article  CAS  Google Scholar 

  9. X. Chen and S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107(2007), No. 7, p. 2891.

    Article  CAS  Google Scholar 

  10. A.L. Linsebigler, G. Lu, and J.T.J. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95(1995), No. 3, p. 735.

    Article  CAS  Google Scholar 

  11. M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1995), No. 1, p. 69.

    Article  CAS  Google Scholar 

  12. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, and G.Q. Lu, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc., 131(2009), No. 11, p. 4078.

    Article  CAS  Google Scholar 

  13. D.P. Macwan, P.N. Dave, and S. Chaturvedi, A review on nano-TiO2 sol-gel type syntheses and its applications, J. Mater. Sci., 46(2011), No. 11, p. 3669.

    Article  CAS  Google Scholar 

  14. F. Bosc, A. Ayral, P.A. Albouy, and C.F. Guizard, A simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin films, Chem. Mater., 15(2003), No. 12, p. 2463.

    Article  CAS  Google Scholar 

  15. W.F. Sullivan and S.S. Cole, Thermal chemistry of colloidal titanium dioxide, J. Am. Ceram. Soc., 42(1959), No. 3, p. 127.

    Article  CAS  Google Scholar 

  16. H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7(1995), No. 4, p. 663.

    Article  CAS  Google Scholar 

  17. G.S. Li, L.P. Li, J. Boerio-Goates, and B.F. Woodfield, High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry, J. Am. Chem. Soc., 127(2005), No. 24, p. 8659.

    Article  CAS  Google Scholar 

  18. C.C. Wang and J.Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater., 11(1999), No. 11, p. 3113.

    Article  CAS  Google Scholar 

  19. S. Cassaignon, M. Koelsch, and J.P. Jolivet, Selective synthesis of brookite, anatase and rutile nanoparticles: Thermolysis of TiCl4 in aqueous nitric acid, J. Mater. Sci., 42(2007), No. 16, p. 6689.

    Article  CAS  Google Scholar 

  20. R. Parra, M.S. Góes, M.S. Castro, E. Longo, P.R. Bueno, and J.A. Varela, Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid, Chem. Mater., 20(2008), No. 1, p. 143.

    Article  CAS  Google Scholar 

  21. W.S. Zhang, Z.W. Zhu, and C.Y. Cheng, A literature review of titanium metallurgical processes, Hydrometallurgy, 108(2011), No. 3, p. 177.

    Article  CAS  Google Scholar 

  22. K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, An overview on the production of pigment grade titania from titaniarich slag, Waste Manage. Res., 24(2006), No. 1, p. 74.

    Article  CAS  Google Scholar 

  23. L. Palliyaguru, N.D.H. Arachchi, C.D. Jayaweera, and P.M. Jayaweera, Production of synthetic rutile from ilmenite via anion-exchange, Miner. Process. Extr. Metall., 127(2018), No. 3, p. 169.

    CAS  Google Scholar 

  24. T.A. Lasheen, Sulfate digestion process for high purity TiO2 from titania slag, Front. Chem. Eng. China, 3(2009), No. 2, p. 155.

    Article  CAS  Google Scholar 

  25. T. Hisashi, N. Eiichi, T. Hitoshi, A. Masahiro, and O. Taijiro, Manufacture of high pure titanium(IV) oxide by the chloride Process. I. Kinetic study on leaching of ilmenite ore in concentrated hydrochloric acid solution, Bull. Chem. Soc. Jpn, 55(1982), No. 6, p. 1934.

    Article  Google Scholar 

  26. S. Sariman, Y.K. Krisnandi, and B. Setiawan, Anatase TiO2 enrichment from bangka ilmenite (FeTiO3) and its photocatalytic test on degradation of congo red, Adv. Mater. Res., 789(2013), p. 538.

    Article  CAS  Google Scholar 

  27. S. Wahyuingsih, A.H. Ramelan, E. Pramono, A.D. Sulistya, P.R. Argawan, F.D. Dharmawan, L. Rinawati, Q.A. Hanif, E. Sulistiyono, and F. Firdiyono, Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite, AIP Conf. Proc., 1710(2016), No. 1, art. No. 030023.

    Google Scholar 

  28. L. Palliyaguru, M.U.S. Kulathunga, K.G.U.R. Kumarasinghe, C.D. Jayaweera, and P.M. Jayaweera, Facile synthesis of titanium phosphates from ilmenite mineral sand: Potential white pigments for cosmetic applications, J. Cosmet. Sci., 70(2019), No. 3, p. 149.

    Google Scholar 

  29. B.D. Cullity, Elements of X-ray Diffraction, 3rd ed., Addison-Wesley Publishing Company, New Jersey, 1978.

    Google Scholar 

  30. R.A. Spurr and H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem., 29(1957), No. 5, p. 760.

    Article  CAS  Google Scholar 

  31. P. Kubelka, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Am., 38(1948), No. 5, p. 448.

    Article  CAS  Google Scholar 

  32. A. Stoch, W. Jastrzębski, A. Brożek, J. Stoch, J. Szaraniec, B. Trybalska, and G. Kmita, FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants, J. Mol. Struct., 555(2000), No. 1–3, p. 375.

    Article  CAS  Google Scholar 

  33. T.S. Sysoeva, E.A. Asabina, V.I. Pet’kov, and V.S. Kurazhkovskaya, Alkali (alkaline-earth) metal, aluminum, and titanium complex orthophosphates: Synthesis and characterization, Russ. J. Inorg. Chem., 54(2009), No. 6, p. 829.

    Article  Google Scholar 

  34. C. Ratanatamskul, S. Chintitanun, N. Masomboon, and M.C. Lu, Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process, J. Mol. Catal. A: Chem., 331(2010), No. 1, p. 101.

    Article  CAS  Google Scholar 

  35. T.B. Zhang, Y.C. Lu, and G.S. Luo, Effects of temperature and phosphoric acid addition on the solubility of iron phosphate dihydrate in aqueous solutions, Chin. J. Chem. Eng., 25(2017), No. 2, p. 211.

    Article  CAS  Google Scholar 

  36. J.J. Beltrán, F.J. Novegil, K.E. García, and C.A. Barrero, On the reaction of iron oxides and oxyhydroxides with tannic and phosphoric acid and their mixtures, Hyperfine Interact., 195(2010), No. 1, p. 133.

    Article  CAS  Google Scholar 

  37. M. Iuliano, L. Ciavatta, and G. De Tommaso, On the solubility constant of strengite, Soil Sci. Soc. Am. J., 71(2007), No. 4, p. 1137.

    Article  CAS  Google Scholar 

  38. W.J. Zhou, W. He, X.D. Zhang, J.A. Liu, Y. Du, S.P. Yan, X.Y. Tian, X.A. Sun, X.X. Han, and Y.Z. Yue, Simple and rapid synthesis of Fe(PO3)3 by microwave sintering, J. Chem. Eng. Data, 54(2009), No. 7, p. 2073.

    Article  CAS  Google Scholar 

  39. Y.H. Zhang and A. Reller, Phase transformation and grain growth of doped nanosized titania, Mater. Sci. Eng. C, 19(2002), No. 1, p. 323.

    Article  Google Scholar 

  40. W.F. Sullivan and J.R. Coleman, Effect of sulphur trioxide on the anatase-rutile transformation, J. Inorg. Nucl. Chem., 24(1962), No. 6, p. 645.

    Article  Google Scholar 

  41. J. Yang and J.M.F. Ferreira, On the titania phase transition by zirconia additive in a sol-gel-derived powder, Mater. Res. Bull., 33(1998), No. 3, p. 389.

    Article  CAS  Google Scholar 

  42. A.A. Gribb, and J.F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral., 82(1997), No. 7–8, p. 717.

    Article  CAS  Google Scholar 

  43. K.J.D. Mackenzie, The calcination of titania. VI. The effect of reaction atmosphere and electric fields on the anatase-rutile transformation, Trans. J. Brit. Ceram. Soc., 74(1975), No. 4, p. 121.

    CAS  Google Scholar 

  44. K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, and K.J.D. MacKenzie, Effect of silica additive on the anatase-to-rutile phase transition, J. Am. Ceram. Soc., 84(2001), No. 7, p. 1591.

    Article  CAS  Google Scholar 

  45. Y.H. Zhang, C.K. Chan, J.F. Porter, and W. Guo, Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis, J. Mater. Res., 13(2011), No. 9, p. 2602.

    Article  Google Scholar 

  46. T. Ohsaka, F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc., 7(1978), No. 6, p. 321.

    Article  Google Scholar 

  47. E.O. Huffman, W.E. Cate, M.E. Deming, and K.L. Elmore, Solubility of phosphates, rates of solution of calcium phosphates in phosphoric acid solutions, J. Agric. Food Chem., 5(1957), No. 4, p. 266.

    Article  CAS  Google Scholar 

  48. W.E. Cate and M.E. Deming, Effect of impurities on density and viscosity of simulated wet-process phosphoric acid, J. Chem. Eng. Data, 15(1970), No. 2, p. 290.

    Article  CAS  Google Scholar 

  49. A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95(1995), No. 1, p. 49.

    Article  CAS  Google Scholar 

  50. J.F. Zhang, P. Zhou, J.J. Liu, and J.G. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16(2014), No. 38, p. 20382.

    Article  CAS  Google Scholar 

  51. N. Serpone, Is the band gap of pristine TiO2 narrowed by anionand cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B, 110(2006), No. 48, p. 24287.

    Article  CAS  Google Scholar 

  52. K. Madhusudan Reddy, S.V. Manorama, and A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78(2003), No. 1, p. 239.

    Article  Google Scholar 

  53. E.M. Samsudin and S.B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Appl. Surf. Sci., 391(2017), p. 326.

    Article  CAS  Google Scholar 

  54. M. Karbassi, A. Nemati, M.H. Zari, and K. Ahadi, Effect of iron oxide and silica doping on microstructure, bandgap and photocatalytic properties of titania by water-in-oil microemulsion technique, Trans. Indian Ceram. Soc., 70(2011), No. 4, p. 227.

    Article  CAS  Google Scholar 

  55. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114(2014), No. 19, p. 9919.

    Article  CAS  Google Scholar 

  56. S.G. Kumar and L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, The J. Phys. Chem. A, 115(2011), No. 46, p. 13211.

    Article  CAS  Google Scholar 

  57. C.S. Turchi and D.F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, J. Catal., 122(1990), No. 1, p. 178.

    Article  CAS  Google Scholar 

  58. C. Naccache, P. Meriaudeau, M. Che, and A.J. Tench, Identification of oxygen species adsorbed on reduced titanium dioxide, Trans. Faraday Soc., 67(1971), No. 67, p. 506.

    Article  CAS  Google Scholar 

  59. W.Z. Tang and A.N. Huren, UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions, Chemosphere, 31(1995), No. 9, p. 4157.

    Article  CAS  Google Scholar 

  60. J. He, Y.E. Du, Y. Bai, J. An, X.M. Cai, Y.Q. Chen, P.F. Wang, X.J. Yang and Q. Feng, Facile formation of anatase/rutile TiO2 nanocomposites with enhanced photocatalytic activity, Molecules, 24(2019), No. 16, p. 2996.

    Article  CAS  Google Scholar 

  61. T. Luttrell, S. Halpegamage, J.G. Tao, A. Kramer, E. Sutter, and M. Batzill, Why is anatase a better photocatalyst than rutile? — Model studies on epitaxial TiO2 films, Sci. Rep., 4(2014), art. No. 4043.

Download references

Acknowledgements

This work was financially supported by the University of Sri Jayewardenepura under grant number ASP/01/RE/SCI/2019/31. The authors also thank Lanka Mineral Sands Ltd., Sri Lanka, for providing the ilmenite samples; the Central Instrument Facility of the University of Sri Jayewardenepura for the XRD sample analysis; and the Sri Lanka Institute of Nanotechnology Analytical Service for the Raman, TEM, and XRF analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep M. Jayaweera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palliyaguru, L., Kulathunga, U.S., Jayarathna, L.I. et al. A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process. Int J Miner Metall Mater 27, 846–855 (2020). https://doi.org/10.1007/s12613-020-2030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2030-3

Keywords

Navigation