Skip to main content
Log in

Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To produce a highly refined microstructure, several metals or alloys have been processed via equal-channel angular pressing (ECAP). In this work, the mechanical and microstructural changes of the 5083 aluminum alloy in H11 condition after processed by two ECAP passes were investigated. An ECAP H13 steel die with an inner angle (α) of 120° and outer curvature (β) of 20° was used. The microstructural changes were associated with the loss of texture symmetry. The morphologies of the Mg2Si and α-Al(Mn,Fe)Si precipitates for the sample at the initial condition were similar to those subjected to two ECAP passes. The peak broadening measured by X-ray diffraction revealed an increment of both grain refinement and microstrain. After the second extrusion pass, the hardness increased by 62% compared with the initial condition. Moreover, the heterogeneous hardness behavior was compatible with a highly localized dislocation density. After two ECAP passes, shear parallel bands were observed to be at nearly 45° to the extrusion direction. The evaluation of first-order residual stress as a function of the depth of the analyzed sample displayed compressive or tensile values, depending on the measured face. With the plastic deformation applied, the first and second-order residual stresses exhibited significant increment. Williamson-Hall plots showed positive slopes, indicating an increment in the microstrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.L. Dickerson and J. Przydatek, Fatigue of friction stir welds in aluminum alloys that contain root flaws, Int. J. Fatigue, 25(2003), No. 12, p. 1399.

    Article  CAS  Google Scholar 

  2. T. Hirata, T. Oguri, H. Hagino, T. Tanaka, S.W. Chung, Y. Takigawa, and K. Higashi, Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Mater. Sci. Eng. A, 456(2007), No. 1–2, p. 344.

    Article  Google Scholar 

  3. M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083, Mater. Sci. Eng. A, 561(2013), p. 145.

    Article  Google Scholar 

  4. G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Vol. 1 Physical Metallurgy and Processes, CRC press, Boca Raton, 2003.

    Book  Google Scholar 

  5. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties, Metall. Mater. Trans. A, 31(2000), p. 691.

    Article  Google Scholar 

  6. K.T. Park, S.H. Myung, D.H. Shin, and C.S. Lee, Size and distribution of particles and voids pre-existing in equal channel angular pressed 5083 Al alloy: Their effect on cavitation during low-temperature superplastic deformation, Mater. Sci. Eng. A, 371(2004), No. 1–2, p. 178.

    Article  Google Scholar 

  7. S.Y. Chang, B.D. Ahn, S.K. Hong, S. Kamado, Y. Kojima, and D.H. Shin, Tensile deformation characteristics of a nano-structured 5083 Al alloy, J. Alloys Compd., 386(2005), No. 1–2, p. 197.

    Article  CAS  Google Scholar 

  8. J.C. Lee, S.H. Lee, S.W. Kim, D.Y. Hwang, D.H. Shin, and S.W. Lee, The thermal behavior of aluminum 5083 alloys deformed by equal channel angular pressing, Thermochim. Acta, 499(2010), No. 1–2, p. 100.

    Article  CAS  Google Scholar 

  9. P. Fernández, G. Bruno, and G. González-Doncel, Macro and micro-residual stress distribution in 6061 Al–15 vol.% SiCw under different heat treatment conditions, Compos. Sci. Technol., 66(2006), No. 11–12, p. 1738.

    Article  Google Scholar 

  10. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang, Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing, Acta Mater., 57(2009), No. 5, p. 1586.

    Article  CAS  Google Scholar 

  11. Y.G. Kim, Y.G. Ko, D.H. Shin, and S. Lee, Effect of equal-channel angular pressing routes on high-strain-rate deformation behavior of ultra-fine-grained aluminum alloy, Acta Mater., 58(2010), No. 7, p. 2545.

    Article  CAS  Google Scholar 

  12. Y. Iwahashi, J.T. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Mater., 35(1996), No. 2, p. 143.

    Article  CAS  Google Scholar 

  13. G. Gonzalez, C. Braham, J.L. Lebrun, Y. Chastel, W. Seiler, and I.A. Figueroa, Microstructure and texture of Al2SixSn (x = 0, 4, 8 mass%) alloys processed by equal channel angular pressing, Mater. Trans., 53(2012), No. 7, p. 1234.

    Article  CAS  Google Scholar 

  14. O. Engler, Z.S. Liu, and K. Kuhnke, Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454 — Experiment and simulation, J. Alloys Compd., 560(2013), p. 111.

    Article  CAS  Google Scholar 

  15. J.E. Tibballs, J.A. Horst, and C.J. Simensen, Precipitation of α-Al(Fe,Mn)Si from the melt, J. Mater. Sci., 36(2001), p. 937.

    Article  CAS  Google Scholar 

  16. J. Lacaze, L. Eleno, and B. Sundman, Thermodynamic assessment of the aluminum corner of the Al–Fe–Mn–Si system, Metall. Mater. Trans. A, 41(2010), p. 2208.

    Article  Google Scholar 

  17. O. Engler and S. Miller-Jupp, Control of second-phase particles in the Al–Mg–Mn alloy AA 5083, J. Alloys Compd., 689(2016), p. 998.

    Article  CAS  Google Scholar 

  18. G.S. Yi, B.H. Sun, J.D. Poplawsky, Y.K. Zhu, and M.L. Free, Investigation of pre-existing particles in Al 5083 alloys, J. Alloys Compd., 740(2018), p. 461.

    Article  CAS  Google Scholar 

  19. M. Kawasaki, Z. Horita, and T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP, Mater. Sci. Eng. A, 524(2009), No. 1–2, p. 143.

    Article  Google Scholar 

  20. T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A, 462(2007), No. 12, p. 3.

    Article  Google Scholar 

  21. I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci., 54(2009), No. 4, p. 427.

    Article  CAS  Google Scholar 

  22. A.A. Tiamiyu, R. Basu, A.G. Odeshi, and J.A. Szpunar, Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading, Mater. Sci. Eng. A, 636(2015), p. 379.

    Article  CAS  Google Scholar 

  23. S.N. Alhajeri, N. Gao, and T.G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP, Mater. Sci. Eng. A, 528(2011), No. 1011, p. 3833.

    Article  Google Scholar 

  24. Y.T. Zhu, H.G. Jiang, J.Y. Haung, and T.C. Lowe, A new route to bulk nanostructured metals, Metall. Mater. Trans. A, 32(2001), No. 6, p. 1559.

    Article  Google Scholar 

  25. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951.

    Google Scholar 

  26. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater., 45(1997), No. 10, p. 4019.

    Article  CAS  Google Scholar 

  27. D.P. Braga, D.C.C. Magalhães, A.M. Kliauga, C.A.D. Rovere, and V.L. Sordi, Microstructure, mechanical behavior and stress corrosion cracking susceptibility in ultrafine-grained Al–Cu alloy, Mater. Sci. Eng. A, 773(2020), art. No. 138865.

  28. J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, and X.L. Li, Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints, Mater. Sci. Eng. A, 647(2015), p. 7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by PAPIIT-UN-AM through grants IN107917 and scholarship CONACyT (No. 592722). Valuable technical support provided by G. Lara, A. Tejeda, O. Novelo, J. Romero, C. Ramos, C. Flores, F. Garcia, and M. Jain is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Reséndiz, L., Flores-Rivera, A., Figueroa, I.A. et al. Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy. Int J Miner Metall Mater 27, 801–808 (2020). https://doi.org/10.1007/s12613-020-2017-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2017-0

Keywords

Navigation