Skip to main content

Advertisement

Log in

Estrogen and bones after menopause: a reappraisal of data and future perspectives

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Menopausal hormone therapy (MHT) is effective in preventing menopause-related bone loss and decreasing vertebral, non-vertebral and hip fracture risk. MHT contains estrogens that exert both antiosteoclastic and osteoanabolic effects. These effects are dose-dependent, as even ultra-low doses preserve or increase bone mineral density. The transdermal route of administration is effective on cancellous and cortical bone, although fracture data are still lacking. Hormone replacement therapy is the treatment of choice to preserve skeletal health in women with premature ovarian insufficiency and early menopause. MHT can be considered in women aged < 60 years or within 10 years since menopause as, in this population, benefits outweigh possible risks, such as breast cancer and cardiovascular events. Despite the ensuing bone loss after MHT discontinuation, a residual antifracture effect persists. However, in women at risk of fracture, subsequent antiosteoporotic therapy may be needed, either with an antiosteoclastic or osteoanabolic agent. In any case, longitudinal data from randomized controlled trials comparing different estrogen doses and routes of administration, as well as designating the optimal treatment strategy after MHT discontinuation, are needed to elucidate these issues further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ, Lee JS, Karlamangla AS (2012) Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res 27:111–118

    Article  PubMed  Google Scholar 

  2. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC (2017) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97:135–187

    Article  PubMed  Google Scholar 

  3. Fakkert IE, Teixeira N, Abma EM, Slart R, Mourits M, de Bock GH (2017) Bone mineral density and fractures after surgical menopause: systematic review and meta-analysis. BJOG 124:1525–1535

    Article  CAS  PubMed  Google Scholar 

  4. Shieh A, Greendale GA, Cauley JA, Karvonen-Gutierrez C, Crandall CJ, Karlamangla AS (2019) Estradiol and follicle-stimulating hormone as predictors of onset of menopause transition-related bone loss in pre- and perimenopausal women. J Bone Miner Res 34:2246–2253

    Article  CAS  PubMed  Google Scholar 

  5. Anagnostis P, Siolos P, Gkekas NK et al (2019) Association between age at menopause and fracture risk: a systematic review and meta-analysis. Endocrine 63:213–224

    Article  CAS  PubMed  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bord S, Ireland DC, Beavan SR, Compston JE (2003) The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 32:136–141

    Article  CAS  PubMed  Google Scholar 

  8. Modder UI, Sanyal A, Kearns AE et al (2004) Effects of loss of steroid receptor coactivator-1 on the skeletal response to estrogen in mice. Endocrinology 145:913–921

    Article  PubMed  CAS  Google Scholar 

  9. Almeida M, Iyer S, Martin-Millan M et al (2013) Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 123:394–404

    Article  CAS  PubMed  Google Scholar 

  10. Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS, Jilka RL, O’Brien CA, Manolagas SC (2010) The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu H, Liu K, Bodenner DL (2005) Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation. Cytokine 31:251–257

    Article  CAS  PubMed  Google Scholar 

  12. Fu J, Li S, Feng R et al (2016) Multiple myeloma-derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease. J Clin Invest 126:1759–1772

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu T, Achari Y, Sciore P, Hart DA (2006) Estrogen receptor alpha regulates matrix metalloproteinase-13 promoter activity primarily through the AP-1 transcriptional regulatory site. Biochim Biophys Acta 1762:719–731

    Article  CAS  PubMed  Google Scholar 

  14. Bartell SM, Han L, Kim HN et al (2013) Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass. Mol Endocrinol 27:649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Syed FA, Modder UI, Fraser DG, Spelsberg TC, Rosen CJ, Krust A, Chambon P, Jameson JL, Khosla S (2005) Skeletal effects of estrogen are mediated by opposing actions of classical and nonclassical estrogen receptor pathways. J Bone Miner Res 20:1992–2001

    Article  CAS  PubMed  Google Scholar 

  16. Luo J, Liu D (2020) Does GPER really function as a G protein-coupled estrogen receptor in vivo? Front Endocrinol (Lausanne) 11:148

    Article  Google Scholar 

  17. Luo J, Sun P, Siwko S, Liu M, Xiao J (2019) The role of GPCRs in bone diseases and dysfunctions. Bone Res 7:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Teplyuk NM, Galindo M, Teplyuk VI et al (2008) Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J Biol Chem 283:27585–27597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martensson UE, Salehi SA, Windahl S et al (2009) Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150:687–698

    Article  PubMed  CAS  Google Scholar 

  20. Wang J, Stern PH (2011) Sex-specific effects of estrogen and androgen on gene expression in human monocyte-derived osteoclasts. J Cell Biochem 112:3714–3721

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura T, Imai Y, Matsumoto T et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  CAS  PubMed  Google Scholar 

  22. Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S, Takayanagi H (2019) Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab 29:627–637 e625

    Article  CAS  PubMed  Google Scholar 

  24. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  25. Streicher C, Heyny A, Andrukhova O et al (2017) Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci Rep 7:6460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brylka LJ, Schinke T (2019) Chemokines in physiological and pathological bone remodeling. Front Immunol 10:2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ucer S, Iyer S, Kim HN et al (2017) The effects of aging and sex steroid deficiency on the murine skeleton are independent and mechanistically distinct. J Bone Miner Res 32:560–574

    Article  CAS  PubMed  Google Scholar 

  29. Kim RY, Yang HJ, Song YM, Kim IS, Hwang SJ (2015) Estrogen modulates bone morphogenetic protein-induced sclerostin expression through the Wnt signaling pathway. Tissue Eng Part A 21:2076–2088

    Article  CAS  PubMed  Google Scholar 

  30. van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowik CW (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16:319–327

    Article  PubMed  CAS  Google Scholar 

  31. Mirza FS, Padhi ID, Raisz LG, Lorenzo JA (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hannon R, Blumsohn A, Naylor K, Eastell R (1998) Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 13:1124–1133

    Article  CAS  PubMed  Google Scholar 

  33. Zhu H, Jiang J, Wang Q, Zong J, Zhang L, Ma T, Xu Y, Zhang L (2018) Associations between ERalpha/beta gene polymorphisms and osteoporosis susceptibility and bone mineral density in postmenopausal women: a systematic review and meta-analysis. BMC Endocr Disord 18:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sunyer T, Lewis J, Collin-Osdoby P, Osdoby P (1999) Estrogen’s bone-protective effects may involve differential IL-1 receptor regulation in human osteoclast-like cells. J Clin Invest 103:1409–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mano H, Yuasa T, Kameda T et al (1996) Mammalian mature osteoclasts as estrogen target cells. Biochem Biophys Res Commun 223:637–642

    Article  CAS  PubMed  Google Scholar 

  36. Monroe DG, Secreto FJ, Hawse JR, Subramaniam M, Khosla S, Spelsberg TC (2006) Estrogen receptor isoform-specific regulation of the retinoblastoma-binding protein 1 (RBBP1) gene: roles of AF1 and enhancer elements. J Biol Chem 281:28596–28604

    Article  CAS  PubMed  Google Scholar 

  37. Hawse JR, Subramaniam M, Monroe DG, Hemmingsen AH, Ingle JN, Khosla S, Oursler MJ, Spelsberg TC (2008) Estrogen receptor beta isoform-specific induction of transforming growth factor beta-inducible early gene-1 in human osteoblast cells: an essential role for the activation function 1 domain. Mol Endocrinol 22:1579–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stuenkel CA, Davis SR, Gompel A, Lumsden MA, Murad MH, Pinkerton JV, Santen RJ (2015) Treatment of symptoms of the menopause: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 100:3975–4011

    Article  CAS  PubMed  Google Scholar 

  39. Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  40. Anagnostis P, Paschou SA, Katsiki N, Krikidis D, Lambrinoudaki I, Goulis DG (2019) Menopausal hormone therapy and cardiovascular risk: where are we now? Curr Vasc Pharmacol 17:564–572

    Article  CAS  PubMed  Google Scholar 

  41. Anderson GL, Limacher M, Assaf AR et al (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291:1701–1712

    Article  CAS  PubMed  Google Scholar 

  42. Robbins JA, Aragaki A, Crandall CJ et al (2014) Women’s Health Initiative clinical trials: interaction of calcium and vitamin D with hormone therapy. Menopause 21:116–123

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cauley JA, Robbins J, Chen Z et al (2003) Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290:1729–1738

    Article  CAS  PubMed  Google Scholar 

  44. Zhu L, Jiang X, Sun Y, Shu W (2016) Effect of hormone therapy on the risk of bone fractures: a systematic review and meta-analysis of randomized controlled trials. Menopause 23:461–470

    Article  PubMed  Google Scholar 

  45. Abdi F, Mobedi H, Bayat F, Mosaffa N, Dolatian M, Ramezani Tehrani F (2017) The effects of transdermal estrogen delivery on bone mineral density in postmenopausal women: a meta-analysis. Iran J Pharm Res 16:380–389

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Warming L, Ravn P, Christiansen C (2005) Levonorgestrel and 17beta-estradiol given transdermally for the prevention of postmenopausal osteoporosis. Maturitas 50:78–85

    Article  CAS  PubMed  Google Scholar 

  47. Cetinkaya MB, Kokcu A, Yanik FF, Basoglu T, Malatyalioglu E, Alper T (2002) Comparison of the effects of transdermal estrogen, oral estrogen, and oral estrogen-progestogen therapy on bone mineral density in postmenopausal women. J Bone Miner Metab 20:44–48

    Article  CAS  PubMed  Google Scholar 

  48. Prelevic GM, Bartram C, Wood J, Okolo S, Ginsburg J (1996) Comparative effects on bone mineral density of tibolone, transdermal estrogen and oral estrogen/progestogen therapy in postmenopausal women. Gynecol Endocrinol 10:413–420

    Article  CAS  PubMed  Google Scholar 

  49. Zaiem F, Alahdab F, Al Nofal A, Murad MH, Javed A (2017) Oral versus transdermal estrogen in turner syndrome: a systematic review and meta-analysis. Endocr Pract 23:408–421

    Article  PubMed  Google Scholar 

  50. Mizunuma H, Taketani Y, Ohta H, Honjo H, Gorai I, Itabashi A, Shiraki M (2010) Dose effects of oral estradiol on bone mineral density in Japanese women with osteoporosis. Climacteric 13:72–83

    Article  CAS  PubMed  Google Scholar 

  51. Gambacciani M, Cappagli B, Ciaponi M, Pepe A, Vacca F, Genazzani AR (2008) Ultra low-dose hormone replacement therapy and bone protection in postmenopausal women. Maturitas 59:2–6

    Article  CAS  PubMed  Google Scholar 

  52. Vujovic S, Brincat M, Erel T, Gambacciani M, Lambrinoudaki I, Moen MH, Schenck-Gustafsson K, Tremollieres F, Rozenberg S, Rees M (2010) EMAS position statement: managing women with premature ovarian failure. Maturitas 67:91–93

    Article  PubMed  Google Scholar 

  53. Lindsay R, Gallagher JC, Kleerekoper M, Pickar JH (2002) Effect of lower doses of conjugated equine estrogens with and without medroxyprogesterone acetate on bone in early postmenopausal women. JAMA 287:2668–2676

    Article  CAS  PubMed  Google Scholar 

  54. Banks E, Beral V, Reeves G, Balkwill A, Barnes I, Million Women Study C (2004) Fracture incidence in relation to the pattern of use of hormone therapy in postmenopausal women. JAMA 291:2212–2220

    Article  CAS  PubMed  Google Scholar 

  55. Bjarnason NH, Byrjalsen I, Hassager C, Haarbo J, Christiansen C (2000) Low doses of estradiol in combination with gestodene to prevent early postmenopausal bone loss. Am J Obstet Gynecol 183:550–560

    Article  CAS  PubMed  Google Scholar 

  56. Prestwood KM, Kenny AM, Kleppinger A, Kulldorff M (2003) Ultralow-dose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 290:1042–1048

    Article  CAS  PubMed  Google Scholar 

  57. Recker RR, Davies KM, Dowd RM, Heaney RP (1999) The effect of low-dose continuous estrogen and progesterone therapy with calcium and vitamin D on bone in elderly women. A randomized, controlled trial. Ann Intern Med 130:897–904

    Article  CAS  PubMed  Google Scholar 

  58. Prestwood KM, Kenny AM, Unson C, Kulldorff M (2000) The effect of low dose micronized 17ss-estradiol on bone turnover, sex hormone levels, and side effects in older women: a randomized, double blind, placebo-controlled study. J Clin Endocrinol Metab 85:4462–4469

    CAS  PubMed  Google Scholar 

  59. Sharp CA, Evans SF, Risteli L, Risteli J, Worsfold M, Davie MW (1996) Effects of low- and conventional-dose transcutaneous HRT over 2 years on bone metabolism in younger and older postmenopausal women. Eur J Clin Investig 26:763–771

    Article  CAS  Google Scholar 

  60. Prior JC (2018) Progesterone for the prevention and treatment of osteoporosis in women. Climacteric 21:366–374

    Article  CAS  PubMed  Google Scholar 

  61. Prior JC, Seifert-Klauss VR, Giustini D, Adachi JD, Kalyan S, Goshtasebi A (2017) Estrogen-progestin therapy causes a greater increase in spinal bone mineral density than estrogen therapy - a systematic review and meta-analysis of controlled trials with direct randomization. J Musculoskelet Neuronal Interact 17:146–154

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tremollieres FA, Pouilles JM, Ribot C (2001) Withdrawal of hormone replacement therapy is associated with significant vertebral bone loss in postmenopausal women. Osteoporos Int 12:385–390

    Article  CAS  PubMed  Google Scholar 

  63. Greendale GA, Espeland M, Slone S, Marcus R, Barrett-Connor E, PEPI Safety Follow-Up Study (PSFS) Investigators (2002) Bone mass response to discontinuation of long-term hormone replacement therapy: results from the Postmenopausal Estrogen/Progestin Interventions (PEPI) Safety Follow-up Study. Arch Intern Med 162:665–672

  64. Karim R, Dell RM, Greene DF, Mack WJ, Gallagher JC, Hodis HN (2011) Hip fracture in postmenopausal women after cessation of hormone therapy: results from a prospective study in a large health management organization. Menopause 18:1172–1177

    Article  PubMed  PubMed Central  Google Scholar 

  65. Papadakis G, Hans D, Gonzalez-Rodriguez E, Vollenweider P, Waeber G, Marques-Vidal PM, Lamy O (2016) The benefit of menopausal hormone therapy on bone density and microarchitecture persists after its withdrawal. J Clin Endocrinol Metab 101:5004–5011

    Article  CAS  PubMed  Google Scholar 

  66. Watts NB, Cauley JA, Jackson RD et al (2017) No increase in fractures after stopping hormone therapy: results from the Women’s Health Initiative. J Clin Endocrinol Metab 102:302–308

    PubMed  Google Scholar 

  67. Bagger YZ, Tanko LB, Alexandersen P, Hansen HB, Mollgaard A, Ravn P, Qvist P, Kanis JA, Christiansen C (2004) Two to three years of hormone replacement treatment in healthy women have long-term preventive effects on bone mass and osteoporotic fractures: the PERF study. Bone 34:728–735

    Article  CAS  PubMed  Google Scholar 

  68. Anagnostis P, Gkekas NK, Potoupnis M, Kenanidis E, Tsiridis E, Goulis DG (2019) New therapeutic targets for osteoporosis. Maturitas 120:1–6

    Article  CAS  PubMed  Google Scholar 

  69. Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for C, Economic Aspects of O, the Committees of Scientific A, National Societies of the International Osteoporosis F (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44

    Article  CAS  PubMed  Google Scholar 

  70. Cobin RH, Goodman NF (2017) American Association of Clinical Endocrinologists and American College of Endocrinology position statement on menopause-2017 update. Endocr Pract 23:869–880

    Article  PubMed  Google Scholar 

  71. Armeni E, Lambrinoudaki I, Ceausu I et al (2016) Maintaining postreproductive health: a care pathway from the European Menopause and Andropause Society (EMAS). Maturitas 89:63–72

    Article  PubMed  Google Scholar 

  72. de Villiers TJ, Hall JE, Pinkerton JV, Perez SC, Rees M, Yang C, Pierroz DD (2016) Revised global consensus statement on menopausal hormone therapy. Maturitas 91:153–155

    Article  PubMed  Google Scholar 

  73. Rozenberg SA-DN, Aubertin-Leheudre M, Brandi M-L, Cano A, Collins P, Cooper C, Genazzani A, Hillard T, Kanis JA, Kaufman J-M, Lambrinoudaki I, Laslop A, McCloskey E, Palacios S, Prieto-Alhambra D, ReginsterJ-Y RR, Rosano G, Trémollieres F, Harvey NC, An Experts consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) (2020) Is there a role for menopausal hormone therapy in the management of post-menopausal osteoporosis? Osteoporos Int [article in press]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Anagnostis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagnostis, P., Bosdou, J.K., Vaitsi, K. et al. Estrogen and bones after menopause: a reappraisal of data and future perspectives. Hormones 20, 13–21 (2021). https://doi.org/10.1007/s42000-020-00218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-020-00218-6

Keywords

Navigation