Skip to main content
Log in

Correspondence between tensorial spin-s and spin-weighted spherical harmonics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The tensorial spin-s and the spin weighted spherical harmonics are functions on the sphere which are extremely useful for many calculations in general relativity. These sets of functions constitute two orthonormal bases and can be used to expand spin-s fields in General Relativity and other fields. Particularly, we are interested in the Weyl scalar \(\psi _4\) which is related to the gravitational radiation. In this article, we build a catalog where the correspondence between tensorial spin-s and the spin weighted spherical harmonics is shown. Also, as a simple application, we use the resulting transformations to link the quadrupole and octupole shear of a tensorial spin-s expansion with the gravitational wave functions expressed in terms of the spin weighted spherical harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Held, A., Newman, E.T., Posadas, R.: The lorentz group and the sphere. J. Math. Phys. 11(11), 3145–3154 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  2. Goldberg, J.N., MacFarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin-s spherical harmonics and & #x00F0. J. Math. Phys. 8(11), 2155–2161 (1967)

    Article  ADS  Google Scholar 

  3. Ezra, T.: Newman and Roger Penrose. Note on the bondi-metzner-sachs group. J. Math. Phys. 7(5), 863–870 (1966)

    Article  Google Scholar 

  4. Newman, E.T., Silva-Ortigoza, G.: Tensorial spin-s harmonics. Class Quantum Grav. 23, 497–509 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Boas, M.L.: Mathematical Methods in the Physical Sciences. Wiley, New York (2006)

    MATH  Google Scholar 

  6. Adamo, T.M., Newman, E.T., Kozameh, C.N.: Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. Liv. Rev. Relativ. 15, 1 (2012)

    Article  ADS  Google Scholar 

  7. Kozameh, C.N., Quiroga, G.D.: Spin and center of mass in axially symmetric Einstein–Maxwell spacetimes. Class. Quantum Gravit. 29, 235006 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kozameh, C.N., Nieva, J.I., Quiroga, G.D.: Spin and center of mass comparison between the post-newtonian approach and the asymptotic formulation. Phys. Rev. D 98(6), 064005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. Nakano, Hiroyuki, Healy, James, Lousto, Carlos O., Zlochower, Yosef: Perturbative extraction of gravitational waveforms generated with numerical relativity. Phys. Rev. D 91(10), 104022 (2015)

    Article  ADS  Google Scholar 

  10. Healy, James, Lousto, Carlos O., Zlochower, Yosef, Campanelli, Manuela: The rit binary black hole simulations catalog. Class. Quantum Gravit. 34(22), 224001 (2017)

    Article  ADS  Google Scholar 

  11. CCRG@RIT numerical realtivity group. Numerical simulations catalog. https://ccrg.rit.edu/~RITCatalog/. Accessed 2019

  12. Newman, E.T., Tod, K.P.: Asymptotically flat space-times. In: Held, A. (ed.) General Relativity and Gravitation, vol. 2. Plenum Publishing, New York (1980)

    Google Scholar 

  13. Gómez López, L.A., Quiroga, G.D.: Asymptotic structure of spacetime and the newman-penrose formalism: a brief review. Revista mexicana de física 63(3), 275–286 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Carlos Kozameh for his suggestions that improved the quality of this article. This research has been supported by grants from CONICET-Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Quiroga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A harmonics transformation list for \(s>0\)

A harmonics transformation list for \(s>0\)

In this appendix, we include the transformation between both harmonics assuming spin \(s>0\).

l = 1; s = 1:

$$\begin{aligned} Y^1_{1x}&=\sqrt{\frac{2\pi }{3}}\Big ({}_{(1)}Y_{11}-{}_{(1)}Y_{1-1}\Big ) \end{aligned}$$
(96)
$$\begin{aligned} Y^1_{1y}&=-i\sqrt{\frac{2\pi }{3}}\Big ({}_{(1)}Y_{1-1}+{}_{(1)}Y_{11}\Big ) \end{aligned}$$
(97)
$$\begin{aligned} Y^1_{1z}&=-2\sqrt{\frac{\pi }{3}}{}_{(1)}Y_{10} \end{aligned}$$
(98)

l = 2 ; s = 1:

$$\begin{aligned} Y^1_{2xx}&=-2\sqrt{\frac{\pi }{5}}\Big ({}_{(1)}Y_{2-2}+{}_{(1)}Y_{22}\Big )+2\sqrt{\frac{2\pi }{15}}{}_{(1)}Y_{20} \end{aligned}$$
(99)
$$\begin{aligned} Y^1_{2xy}&=2i\sqrt{\frac{\pi }{5}}\Big ({}_{(1)}Y_{22}-{}_{(1)}Y_{2-2}\Big ) \end{aligned}$$
(100)
$$\begin{aligned} Y^1_{2xz}&=-2\sqrt{\frac{\pi }{5}}\Big ({}_{(1)}Y_{2-1}-{}_{(1)}Y_{21}\Big ) \end{aligned}$$
(101)
$$\begin{aligned} Y^1_{2yy}&=2\sqrt{\frac{\pi }{5}}\Big ({}_{(1)}Y_{2-2}+{}_{(1)}Y_{22}\Big )+2\sqrt{\frac{2\pi }{15}}{}_{(1)}Y_{20} \end{aligned}$$
(102)
$$\begin{aligned} Y^1_{2yz}&=-2i\sqrt{\frac{\pi }{5}}\Big ({}_{(1)}Y_{2-1}+{}_{(1)}Y_{21}\Big ) \end{aligned}$$
(103)

l = 2 ; s = 2:

$$\begin{aligned} Y^2_{2xx}&=\sqrt{\frac{\pi }{5}}\Big ({}_{(2)}Y_{2-2}+{}_{(2)}Y_{22}\Big )-\sqrt{\frac{2\pi }{15}}{}_{(2)}Y_{20} \end{aligned}$$
(104)
$$\begin{aligned} Y^2_{2xy}&=i\sqrt{\frac{\pi }{5}}\Big ({}_{(2)}Y_{2-2}-{}_{(2)}Y_{22}\Big ) \end{aligned}$$
(105)
$$\begin{aligned} Y^2_{2xz}&=\sqrt{\frac{\pi }{5}}\Big ({}_{(2)}Y_{2-1}-{}_{(2)}Y_{21}\Big ) \end{aligned}$$
(106)
$$\begin{aligned} Y^2_{2yy}&=-\sqrt{\frac{\pi }{5}}\Big ({}_{(2)}Y_{2-2}+{}_{(2)}Y_{22}\Big )-\sqrt{\frac{2\pi }{15}}{}_{(2)}Y_{20} \end{aligned}$$
(107)
$$\begin{aligned} Y^2_{2yz}&=i\sqrt{\frac{\pi }{5}}\Big ({}_{(2)}Y_{2-1}+{}_{(2)}Y_{21}\Big ) \end{aligned}$$
(108)

l = 3 ; s = 1:

$$\begin{aligned} Y^1_{3xxx}&=-2\sqrt{\frac{\pi }{14}}\Big (3{}_{(1)}Y_{31}-\sqrt{15}{}_{(1)}Y_{33}-3{}_{0}Y_{3-1}+\sqrt{15}{}_{(1)}Y_{3-3}\Big ) \end{aligned}$$
(109)
$$\begin{aligned} Y^1_{3xxy}&=2i\sqrt{\frac{\pi }{14}}\Big ({}_{(1)}Y_{31}-\sqrt{15}{}_{(1)}Y_{33}+{}_{(1)}Y_{3-1}-\sqrt{15}{}_{(1)}Y_{3-3}\Big ) \end{aligned}$$
(110)
$$\begin{aligned} Y^1_{3xxz}&=\frac{1}{3}\Big (6\sqrt{\frac{6\pi }{7}}{}_{(1)}Y_{30}-\sqrt{\frac{15\pi }{7}}\Big (2\sqrt{3}{}_{(1)}Y_{32}+2\sqrt{3}{}_{(1)}Y_{3-2}\Big )\Big ) \end{aligned}$$
(111)
$$\begin{aligned} Y^1_{3xyy}&=-2\sqrt{\frac{\pi }{14}}\Big ({}_{(1)}Y_{31}+\sqrt{15}{}_{(1)}Y_{33}-{}_{(1)}Y_{3-1}-\sqrt{15}{}_{(1)}Y_{3-3}\Big ) \end{aligned}$$
(112)
$$\begin{aligned} Y^1_{3xyz}&=2i\sqrt{\frac{15\pi }{21}}\Big ({}_{(1)}Y_{32}-{}_{(1)}Y_{3-2}\Big ) \end{aligned}$$
(113)
$$\begin{aligned} Y^1_{3yyy}&=2i\sqrt{\frac{\pi }{14}}\Big (3{}_{(1)}Y_{31}+\sqrt{15}{}_{(1)}Y_{33}+3{}_{(1)}Y_{3-1}+\sqrt{15}{}_{(1)}Y_{3-3}\Big ) \end{aligned}$$
(114)
$$\begin{aligned} Y^1_{3yyz}&=\frac{2}{21}\sqrt{\pi }\Big (3\sqrt{42}{}_{(1)}Y_{30}+\sqrt{315}\Big ({}_{(1)}Y_{32}+{}_{(1)}Y_{3-2}\Big )\Big ) \end{aligned}$$
(115)

l = 3 ; s = 2:

$$\begin{aligned} Y^2_{3xxx}&=\sqrt{\frac{\pi }{35}}\Big (3{}_{(2)}Y_{31}-\sqrt{15}{}_{(2)}Y_{33}-3{}_{(2)}Y_{3-1}+\sqrt{15}{}_{(2)}Y_{3-3}\Big ) \end{aligned}$$
(116)
$$\begin{aligned} Y^2_{3xxy}&=-i\sqrt{\frac{\pi }{35}}\Big ({}_{(2)}Y_{31}-\sqrt{15}{}_{(2)}Y_{33}+{}_{(2)}Y_{3-1}-\sqrt{15}{}_{(2)}Y_{3-3}\Big ) \end{aligned}$$
(117)
$$\begin{aligned} Y^2_{3xxz}&=\sqrt{\frac{2\pi }{7}}\Big ({}_{(2)}Y_{32}+{}_{(2)}Y_{3-2}\Big )-2\sqrt{\frac{3\pi }{35}}{}_{(2)}Y_{30} \end{aligned}$$
(118)
$$\begin{aligned} Y^2_{3xyy}&=\sqrt{\frac{\pi }{35}}\Big ({}_{(2)}Y_{31}+\sqrt{15}{}_{(2)}Y_{33}-{}_{(2)}Y_{3-1}-\sqrt{15}{}_{(2)}Y_{3-3}\Big ) \end{aligned}$$
(119)
$$\begin{aligned} Y^2_{3xyz}&=-2i\sqrt{\frac{\pi }{42}}\Big (\sqrt{3}{}_{(2)}Y_{32}-\sqrt{3}{}_{(2)}Y_{3-2}\Big ) \end{aligned}$$
(120)
$$\begin{aligned} Y^2_{3yyy}&=-i\sqrt{\frac{\pi }{35}}\Big (3{}_{(2)}Y_{31}+\sqrt{15}{}_{(2)}Y_{33}+3{}_{(2)}Y_{3-1}+\sqrt{15}{}_{(2)}Y_{3-3}\Big ) \end{aligned}$$
(121)
$$\begin{aligned} Y^2_{3yyz}&=-\frac{2}{21}\sqrt{\frac{\pi }{10}}\Big (3\sqrt{42}{}_{(2)}Y_{30}+\sqrt{315}\Big ({}_{(2)}Y_{32}+{}_{(2)}Y_{3-2}\Big )\Big ) \end{aligned}$$
(122)

l = 3 ; s = 3:

$$\begin{aligned} Y^3_{3xxx}&=-\sqrt{\frac{\pi }{210}}(3{}_{\Big (3)}Y_{31}-\sqrt{15}{}_{(3)}Y_{33}-3{}_{(3)}Y_{3-1}+\sqrt{15}{}_{(3)}Y_{3-3}\Big ) \end{aligned}$$
(123)
$$\begin{aligned} Y^3_{3xxy}&=i\sqrt{\frac{\pi }{210}}\Big ({}_{(3)}Y_{31}-\sqrt{15}{}_{(3)}Y_{33}+{}_{(3)}Y_{3-1}-\sqrt{15}{}_{(3)}Y_{3-3}\Big ) \end{aligned}$$
(124)
$$\begin{aligned} Y^3_{3xxz}&=\sqrt{\frac{2\pi }{35}}{}_{(3)}Y_{30}-\sqrt{\frac{\pi }{21}}\Big ({}_{(3)}Y_{32}+{}_{(3)}Y_{3-2}\Big ) \end{aligned}$$
(125)
$$\begin{aligned} Y^3_{3xyy}&=-\sqrt{\frac{\pi }{210}}\Big ({}_{(3)}Y_{31}+\sqrt{15}{}_{(3)}Y_{33}-{}_{(3)}Y_{3-1}+\sqrt{15}{}_{(3)}Y_{3-3}\Big ) \end{aligned}$$
(126)
$$\begin{aligned} Y^3_{3xyz}&=\frac{1}{3}i\sqrt{\frac{3\pi }{7}}\Big ({}_{(3)}Y_{32}-{}_{(3)}Y_{3-2}\Big ) \end{aligned}$$
(127)
$$\begin{aligned} Y^3_{3yyy}&=i\sqrt{\frac{\pi }{210}}\Big (3{}_{(3)}Y_{31}+\sqrt{15}{}_{(3)}Y_{33}+3{}_{(3)}Y_{3-1}+\sqrt{15}{}_{(3)}Y_{3-3}\Big ) \end{aligned}$$
(128)
$$\begin{aligned} Y^3_{3yyz}&=\frac{1}{21}\sqrt{\frac{\pi }{15}}\Big (3\sqrt{42}{}_{(3)}Y_{30}+\sqrt{315}\Big ({}_{(3)}Y_{32}+{}_{(3)}Y_{3-2}\Big )\Big ) \end{aligned}$$
(129)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandrilli, P.A., Nieva, J.I. & Quiroga, G.D. Correspondence between tensorial spin-s and spin-weighted spherical harmonics. Gen Relativ Gravit 52, 58 (2020). https://doi.org/10.1007/s10714-020-02710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02710-1

Keywords

Navigation