Skip to main content
Log in

Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this work, we designed and studied a feasible dual-layer binary metagrating, which can realize controllable asymmetric transmission and beam splitting with nearly perfect performance. Owing to ingenious geometry configuration, only one meta-atom is required to design for the metagrating system. By simply controlling air gap between dual-layer metagratings, high-efficiency beam splitting can be well switched from asymmetric transmission to symmetric transmission. The working principle lies on gap-induced diffraction channel transition for incident waves from opposite directions. The asymmetric/symmetric transmission can work in a certain frequency band and a wide incident range. Compared with previous methods using acoustic metasurfaces, our approach has the advantages of simple design and tunable property and shows promise for applications in wavefront manipulation, noise control and one-way propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)

    Article  ADS  Google Scholar 

  2. S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater 1(3), 16001 (2016)

    Article  ADS  Google Scholar 

  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 333 (2011)

    Article  ADS  Google Scholar 

  4. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, From single-dimensional to multidimensional manipulation of optical waves with metasurfaces, Adv. Mater. 31(16), 1802458 (2019)

    Article  Google Scholar 

  5. B. Assouar, B. Liang, Y. Wu, Y. Li, J. Cheng, and Y. Jing, Acoustic metasurfaces, Nat. Rev. Mater. 3(12), 460 (2018)

    Article  ADS  Google Scholar 

  6. Y. Li, B. Liang, Z. Gu, X. Zou, and J. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Sci. Rep. 3(1), 2546 (2013)

    Article  Google Scholar 

  7. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun. 5(1), 5553 (2014)

    Article  ADS  Google Scholar 

  8. Y. Wang, Y. Cheng, and X. J. Liu, Modulation of acoustic waves by a broadband metagrating, Sci. Rep. 9(1), 7271 (2019)

    Article  ADS  Google Scholar 

  9. Y. Tian, Q. Wei, Y. Cheng, and X. Liu, Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Appl. Phys. Lett 110(19), 191901 (2017)

    Article  ADS  Google Scholar 

  10. Y. Li and B. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108(6), 063502 (2016)

    Article  ADS  Google Scholar 

  11. B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)

    Article  ADS  Google Scholar 

  12. X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a soniccrystal- based acoustic diode, Phys. Rev. Lett. 106(8), 084301 (2011)

    Article  ADS  Google Scholar 

  13. B. I. Popa and S. A. Cummer, Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun 5(1), 3398 (2014)

    Article  ADS  Google Scholar 

  14. Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)

    Article  ADS  Google Scholar 

  15. Y. Wang, J. Xia, H. Sun, S. Yuan, Y. Ge, Q. Si, Y. Guan, and X. Liu, Multifunctional asymmetric sound manipulations by a passive phased array prism, Phys. Rev. Appl 12(2), 024033 (2019) 52502-5 Yang-Yang Fu, et al., Front. Phys. 15(5), 52502 (2020) Research article

    Article  ADS  Google Scholar 

  16. Y. Zhu, X. Zou, B. Liang, and J. C. Cheng, Acoustic oneway open tunnel by using metasurface, Appl. Phys. Lett 107(11), 113501 (2015)

    Article  ADS  Google Scholar 

  17. Y. Ge, H. Sun, S. Yuan, and Y. Lai, Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms, Appl. Phys. Lett 112(24), 243502 (2018)

    Article  ADS  Google Scholar 

  18. C. Shen, Y. Xie, J. Li, S. A. Cummer, and Y. Jing, Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces, Appl. Phys. Lett. 108(22), 223502 (2016)

    Article  ADS  Google Scholar 

  19. Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, and Y. Jing, Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett. 119(3), 035501 (2017)

    Article  ADS  Google Scholar 

  20. F. Ju, Y. Tian, Y. Cheng, and X. Liu, Asymmetric acoustic transmission with a lossy gradient-index metasurface, Appl. Phys. Lett. 113(12), 121901 (2018)

    Article  ADS  Google Scholar 

  21. B. Liu and Y. Jiang, Controllable asymmetric transmission via gap-tunable acoustic metasurface, Appl. Phys. Lett. 112(17), 173503 (2018)

    Article  ADS  Google Scholar 

  22. J. Xia, X. Zhang, H. Sun, S. Yuan, J. Qian, and Y. Ge, Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces, Phys. Rev. Appl. 10(1), 014016 (2018)

    Article  ADS  Google Scholar 

  23. N. J. R. K. Gerard, H. Cui, C. Shen, Y. Xie, S. Cummer, X. Zheng, and Y. Jing, Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz, Appl. Phys. Lett. 114(23), 231902 (2019)

    Article  ADS  Google Scholar 

  24. C. Shen and S. A. Cummer, Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl. 9(5), 054009 (2018)

    Article  ADS  Google Scholar 

  25. Y. Cao, Y. Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, and Y. Xu, Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces, Phys. Rev. Appl. 12(2), 024006 (2019)

    Article  ADS  Google Scholar 

  26. Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Reversal of transmission and reflection based on acoustic metagratings with integer parity design, Nat. Commun. 10(1), 2326 (2019)

    Article  ADS  Google Scholar 

  27. Y. Fu, Y. Cao, and Y. Xu, Multifunctional reflection in acoustic metagratings with simplified design, Appl. Phys. Lett. 114(5), 053502 (2019)

    Article  ADS  Google Scholar 

  28. Y. Jin, X. Fang, Y. Li, and D. Torrent, Engineered diffraction gratings for acoustic cloaking, Phys. Rev. Appl. 11(1), 011004 (2019)

    Article  ADS  Google Scholar 

  29. C. Shen, A. Díaz-Rubio, J. Li, and S. A. Cummer, A surface impedance-based three-channel acoustic metasurface retroreflector, Appl. Phys. Lett. 112(18), 183503 (2018)

    Article  ADS  Google Scholar 

  30. B. Y. Xie, H. Cheng, K. Tang, Z. Y. Liu, S. Q. Chen, and J. G. Tian, Multiband asymmetric transmission of airborne sound by coded metasurfaces, Phys. Rev. Appl 7(2), 024010 (2017)

    Article  ADS  Google Scholar 

  31. H. Ni, X. Fang, Z. Hou, Y. Li, and B. Assouar, Highefficiency anomalous splitter by acoustic meta-grating, Phys. Rev. B 100(10), 104104 (2019)

    Article  ADS  Google Scholar 

  32. Z. Jia, J. Li, C. Shen, Y. Xie, and S. A. Cummer, Systematic design of broadband path-coiling acoustic metamaterials, J. Appl. Phys. 123(2), 025101 (2018)

    Article  ADS  Google Scholar 

  33. J. Li, C. Shen, A. Díaz-Rubio, S. Tretyakov, and S. A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9(1), 1342 (2018)

    Article  ADS  Google Scholar 

  34. H. Zhang, Y. Zhu, B. Liang, J. Yang, J. Yang, and J. C. Cheng, Omnidirectional ventilated acoustic barrier, Appl. Phys. Lett. 111 (20), 203502 (2017)

    Article  ADS  Google Scholar 

  35. L. Cao, Y. Xu, B. Assouar, and Z. Yang, Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces, Appl. Phys. Lett. 113(18), 183506 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904169, 11974010, 61675095, and 11604229) and the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20190383 and BK20171206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Yang Fu or Ya-Dong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YY., Tao, JQ., Song, AL. et al. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys. 15, 52502 (2020). https://doi.org/10.1007/s11467-020-0968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0968-2

Keywords

Navigation