Skip to main content
Log in

Some optimizations on detecting gravitational wave using convolutional neural network

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This work investigates the problem of detecting gravitational wave (GW) events based on simulated damped sinusoid signals contaminated with white Gaussian noise. It is treated as a classification problem with one class for the interesting events. The proposed scheme consists of the following two successive steps: decomposing the data using a wavelet packet, representing the GW signal and noise using the derived decomposition coeficients; and determining the existence of any GW event using a convolutional neural network (CNN) with a logistic regression output layer. The characteristic of this work is its comprehensive investigations on CNN structure, detection window width, data resolution, wavelet packet decomposition and detection window overlap scheme. Extensive simulation experiments show excellent performances for reliable detection of signals with a range of GW model parameters and signal-to-noise ratios. While we use a simple waveform model in this study, we expect the method to be particularly valuable when the potential GW shapes are too complex to be characterized with a template bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)

    ADS  MathSciNet  Google Scholar 

  2. B. P. Abbott, R. Abbott, and T. D. Abbott, Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6(4), 041015 (2016)

    Google Scholar 

  3. B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017)

    ADS  Google Scholar 

  4. B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)

    ADS  Google Scholar 

  5. B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119(14), 141101 (2017)

    ADS  Google Scholar 

  6. B. P. Abbott, R. Abbott, and R. X. Adhikari, et al., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848(2), L12 (2017)

    ADS  Google Scholar 

  7. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848(2), L13 (2017)

    ADS  Google Scholar 

  8. B. P. Abbott, et al., A gravitational-wave standard siren measurement of the Hubble constant, Nature 551(7678), 85 (2017)

    ADS  Google Scholar 

  9. S. Adrián-Martínez, M. G. Aartsen, B. Abbott, et al., High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube, Phys. Rev. D 93, 122010

  10. B. Abbott, R. Abbott, T. D. Abbott, et al., All-sky search for short gravitational-wave bursts in the first advanced LIGO run, Phys. Rev. D 95, 042003 (2017)

    ADS  Google Scholar 

  11. B. P. Abbott, G. Cagnoli, J. Degallaix, et al., Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93, 122004 (2016)

    ADS  Google Scholar 

  12. C. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole, Nature 227, 936 (1970)

    ADS  Google Scholar 

  13. O. Benhar, V. Ferrari, and L. Gualtieri, Gravitational wave asteroseismology revisited, Phys. Rev. D 70, 124015 (2004)

    ADS  Google Scholar 

  14. J. Powell, D. Trifirò, E. Cuoco, et al., Classification methods for noise transients in advanced gravitational-wave detectors, Class. Quantum Grav. 32, 215012 (2015)

    ADS  Google Scholar 

  15. M. Zevin, S. Couǵhlin, et al., Gravity spy: Integrating advanced LIGO detector characterization, machine learning, and citizen science, Class. Quantum Grav. 34, 064003 (2017)

    ADS  Google Scholar 

  16. J. Powell, A. Torres-Forné, et al., Classification methods for noise transients in advanced gravitational-wave detectors II: Performance tests on advanced LIGO data, Class. Quantum Grav. 34, 034002 (2017)

    ADS  Google Scholar 

  17. B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 85(12), 122006 (2012)

    ADS  Google Scholar 

  18. S. Babak, R. Biswas, et al., Searching for gravitational waves from binary coalescence, Phys. Rev. D 87, 024033 (2013)

    ADS  Google Scholar 

  19. K. Cannon, R. Cariou, A. Chapman, et al., Toward early warning detection of gravitational waves from compact binary coalescence, Astrophys. J. 748(2), 136 (2012)

    ADS  Google Scholar 

  20. S. A. Usman, A. H. Nitz, I. W. Harry, et al., The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)

    ADS  Google Scholar 

  21. H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120(14), 141103 (2018)

    ADS  Google Scholar 

  22. D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data, Phys. Lett. B 778, 64 (2018)

    ADS  Google Scholar 

  23. B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys 15(2), 24602 (2020)

    ADS  Google Scholar 

  24. H. M. Luo, W. B. Lin, Z. C. Chen, and Q. G. Huang, Extraction of gravitational wave signals with optimized convolutional neural network, Front. Phys. 15(1), 14601 (2020)

    ADS  Google Scholar 

  25. D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018)

    ADS  Google Scholar 

  26. T. D. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schlkopf, CONVWAVE: Searching for gravitational waves with fully convolutional Neural Nets, in: Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS), 2017

    Google Scholar 

  27. T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schlkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D 100(6), 063015 (2019)

    ADS  Google Scholar 

  28. S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution techniques for the detection of gravitational-wave bursts, Class. Quantum Grav 21(20), S1809 (2004)

    ADS  MATH  Google Scholar 

  29. P. J. Sutton, G. Jones, S. Chatterji, et al., X-Pipeline: An analysis package for autonomous gravitational-wave burst searches, New J. Phys. 12(5), 053034 (2010)

    ADS  Google Scholar 

  30. S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V. Kalogera, and A. K. Katsaggelos, Deep multi-view models for glitch classification, IEEE ICASSP, 2931–2935 (2017)

    Google Scholar 

  31. S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevein, J. R. Smith, V. Kalogera, and A. Katsaggelos, Machine learning for Gravity Spy: Glitch classification and dataset, Information Sciences 444, pp 172–186 (2018)

    MathSciNet  Google Scholar 

  32. D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97, 101501 (2018)

    ADS  Google Scholar 

  33. N. Mukund, S. Abraham, S. Kandhasamy, and N. S. Philip, Transient classification in LIGO data using difference boosting neural network, Phys. Rev. D 95, 104059 (2017)

    ADS  Google Scholar 

  34. J. C. Brown, Calculation of a constant Q-spectral transform, J. Acoust. Soc. Am. 89(1), 425 (1991)

    ADS  Google Scholar 

  35. S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Coherent method for detection of gravitational wave bursts, Class. Quantum Grav. 25, 114029 (2008)

    ADS  Google Scholar 

  36. S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, S. Tiwari, F. Da Silva, and G. Mitselmakher, Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Phys. Rev. D 93, 042004 (2016)

    ADS  Google Scholar 

  37. R. S. Lynch, S. Vitale, R. C. Essick, E. Katsavounidis, and F. Robinet, An information-theoretic approach to the gravitational-wave burst detection problem, Phys. Rev. D 95, 104046 (2017)

    ADS  Google Scholar 

  38. N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Class. Quantum Grav. 32, 135012 (2015)

    ADS  Google Scholar 

  39. T. B. Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015)

    ADS  Google Scholar 

  40. S. Chatterji, A. Lazzarini, L. Stein, P. Sutton, A. Searle, and M. Tinto, Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise, Phys. Rev. D 74, 082005 (2006)

    ADS  Google Scholar 

  41. S. Bose, S. Dhurandhar, et al., Towards mitigating the effect of sine-Gaussian noise transients on searches for gravitational waves from compact binary coalescences, Phys. Rev. D 94, 122004 (2016)

    ADS  Google Scholar 

  42. B. J. Owen and B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D 60(2), 022002 (1999)

    ADS  Google Scholar 

  43. pwelch: Welch’s power spectral density estimate.

  44. G. D. Meadors, K. Kawabe, and K. Riles, Increasing LIGO sensitivity by feed forward subtraction of auxiliary length control noise, Class. Quantum Grav. 31, 105014 (2014)

    ADS  MATH  Google Scholar 

  45. P. D. Welch, The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics 15(2), 70 (1967)

    Google Scholar 

  46. J. Abadie, B. P. Abbott, R. Abbott, et al., All-sky search for gravitational-wave bursts in the second joint LIGOVirgo run, Phys. Rev. D 85, 122007 (2012)

    ADS  Google Scholar 

  47. S. Mallat, A Wavelet Tour of Signal Processing, Boston: Academic Press, 2009

    MATH  Google Scholar 

  48. K. B. Howell, Principles of Fourier analysis, CRC Press, 2016

    Google Scholar 

  49. I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for Industrial and Applied Mathematics, 1992

    Google Scholar 

  50. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intel. 11(7), 674 (1989)

    ADS  MATH  Google Scholar 

  51. S. Rampone, V. Pierro, L. Troiano, et al., Neural network aided glitch-burst discrimination and glitch classification, Inter. J. Mod. Phys. 24(11), 1350084 (2013)

    ADS  Google Scholar 

  52. S. Vinciguerra, M. Drago, G. A. Prodi, et al., Enhancing the significance of gravitational wave bursts through signal classification, Class. Quantum Grav. 34, 094003 (2017)

    ADS  Google Scholar 

  53. MATLAB and Wavelet Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States

    Google Scholar 

  54. X. R. Li, Y. Lu, G. Comte, AL. Luo, Y. H. Zhao, and Y. J. Wang, Linearly Supporting feature extraction for automated estimation of stellar atmospheric parameters, Astrophys. J. Suppl. S. 218(1), 3 (2015)

    ADS  Google Scholar 

  55. Y. LeCun, B. E. Boser, J. S. Denker, et al., Handwritten digit recognition with a back-propagation network, in Advances in Neural Information Processing Systems, 396 (1990)

  56. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, pp 2278–2324 (1998)

    Google Scholar 

  57. Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning, Nature 521(7553), 436 (2015)

    ADS  Google Scholar 

  58. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature 323(6088), 533 (1986)

    ADS  MATH  Google Scholar 

  59. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, Cambridge: MIT Press, 2016

    MATH  Google Scholar 

  60. H. Wang, Z. J. Cao, X. L. Liu, S. C. Wu, and J. Y. Zhu, Gravitational wave signal recognition of O1 data by deep learning, arXiv: 1909.13442 (2019)

    Google Scholar 

Download references

Acknowledgements

Authors thank H. Gabbard, M. Williams, F. Hayes, and C. Messenger very much for their enthusiastic discussions and sharing of their experimental code. We are grateful for valuable suggestions and corrections from anonymous reviewers, Eric D. Feigelson, Dr. Jin Li and B. S. Sathyaprakash. X. L. and W. Y. were supported by the National Natural Science Foundation of China (Grant Nos. 11973022 and U1811464), the Natural Science Foundation of Guangdong Province (No. 2020A1515010710), and China Scholarship Council (No. 201706755006), and the Joint Research Fund in Astronomy (No. U1531242) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS). Xilong Fan was supported by the National Natural Science Foundation of China (Grant Nos. 11673008 and 11922303) and Hubei Province Natural Science Fund for the Distinguished Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Ru Li or Xi-Long Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XR., Yu, WL., Fan, XL. et al. Some optimizations on detecting gravitational wave using convolutional neural network. Front. Phys. 15, 54501 (2020). https://doi.org/10.1007/s11467-020-0966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0966-4

Keywords

Navigation