Skip to main content
Log in

Ionospheric TEC forecasting using Gaussian Process Regression (GPR) and Multiple Linear Regression (MLR) in Turkey

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This study aims to predict daily ionospheric Total Electron Content (TEC) using Gaussian Process Regression (GPR) model and Multiple Linear Regression (MLR). In this case, daily TEC values from 2015 to 2017 of two Global Navigation Satellite System (GNSS) stations were collected in Turkey. The performance of the GPR model was compared with the classical MLR model using Taylor diagrams and relative error graphs. Six models with various input parameters were performed for both GPR and MLR techniques. The results showed that although the models perform similarly, the GPR model estimated the TEC values more precisely at one and two days ahead. Therefore, the GPR model is recommended to forecast the TEC values at the corresponding GNSS stations over Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ackermann, E.R., De Villiers, J.P., Cilliers, P.J.: Nonlinear dynamic systems modeling using Gaussian processes: predicting ionospheric total electron content over South Africa. J. Geophys. Res. Space Phys. 116, A10 (2011)

    Article  Google Scholar 

  • Albert, J.G., Oei, M.S.S.L., van Weeren, R.J., Intema, H.T., Röttgering, H.J.A.: A probabilistic approach to direction-dependent ionospheric calibration. Astron. Astrophys. 633, A77 (2020)

    Article  Google Scholar 

  • Anderson, D.N., Forbes, J.M., Codrescu, M.: A fully analytic, low-and middle-latitude ionospheric model. J. Geophys. Res. Space Phys. 94(A2), 1520–1524 (1989)

    Article  ADS  Google Scholar 

  • Ansari, K., Panda, S.K., Althuwaynee, O.F., Corumluoglu, O.: Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophys. Space Sci. 362, 178 (2017)

    Article  ADS  Google Scholar 

  • Ansari, K., Panda, S.K., Corumluoglu, O.: Mathematical modelling of ionospheric TEC from Turkish permanent GNSS network (TPGN) observables during 2009-2017 and predictability of NeQuick and Kriging models. Astrophys. Space Sci. 363(3), 42 (2018). https://doi.org/10.1007/s10509-018-3261-x

    Article  ADS  Google Scholar 

  • Ansari, K., Panda, S.K., Jamjareegulgarn, P.: Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period. Acta Astronaut. 169, 216–223 (2020)

    Article  ADS  Google Scholar 

  • Bent, R.B., Llewellyn, S.K., Schmid, P.E.: A highly successful empirical model for the worldwide ionospheric electron density profile. In: DBA Systems, Melbourne, Florida, USA (1972)

    Google Scholar 

  • Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X.: International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2), 418–429 (2017)

    Article  ADS  Google Scholar 

  • Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.M.: Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 81, 111 (2007). https://doi.org/10.1007/s00190-006-0093-1

    Article  ADS  Google Scholar 

  • Elmunim, N.A., Abdullah, M., Hasbi, A.M., Bahari, S.A.: Comparison of statistical Holt-Winter models for forecasting the ionospheric delay using GPS observations. Indian J. Radio Space Phys. 44(1), 28–34 (2015)

    Google Scholar 

  • Ghorbani, M.A., Khamnei, H.J., Asadi, H., Yousefi, P.: Application of chaos theory and genetic programming in runoff time series. Int. J. Struct. Civ. Eng. 1(2), 26–34 (2012)

    Google Scholar 

  • Girard, A., Rasmussen, C.E., Quiñonero-Candela, J., Murray-Smith, R.: Gaussian process priors with uncertain inputs_application to multiple-step ahead time series forecasting. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing System 15, pp. 529–536. MIT Press, Cambridge (2003)

    Google Scholar 

  • Gulyaeva, T.L., Arikan, F., Hernandez-Pajares, M., Stanislawska, I.: GIM-TEC adaptive ionospheric weather assessment and forecast system. J. Atmos. Sol.-Terr. Phys. 102, 329–340 (2013)

    Article  ADS  Google Scholar 

  • Hajra, R., Chakraborty, S.K., Tsurutani, B.T., DasGupta, A., Echer, E., Brum, C.G., Sobral, J.H.A.: An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA). J. Space Weather Space Clim. 6, A29 (2016)

    Article  ADS  Google Scholar 

  • Inyurt, S., Sekertekin, A.: Modeling and predicting seasonal ionospheric variations in Turkey using artificial neural network (ANN). Astrophys. Space Sci. 364(4), 62 (2019)

    Article  ADS  Google Scholar 

  • Inyurt, S., Yildirim, O., Mekik, C.: Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea. Ann. Geophys. 35(4), 817 (2017)

    Article  ADS  Google Scholar 

  • Klobuchar, J.A.: Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 3, 325–331 (1987)

    Article  ADS  Google Scholar 

  • Lean, J.L., Emmert, J.T., Picone, J.M., Meier, R.R.: Global and regional trends in ionospheric total electron content. J. Geophys. Res. Space Phys. 116, A2 (2011)

    Google Scholar 

  • Li, X., Guo, D.: Modeling and prediction of ionospheric total electron content by time series analysis. In: Proc. 2nd Int. Conf. Adv. Comput. Control, pp. 375–379 (2010)

    Google Scholar 

  • Li, S., Peng, J., Xu, W., Qin, K.: Time series modeling and analysis of trends of daily averaged ionospheric total electron content. Adv. Space Res. 52(5), 801–809 (2013)

    Article  ADS  Google Scholar 

  • Lin, M., Song, X., Qian, Q., Li, H., Sun, L., Zhu, S., Jin, R.: Robust Gaussian process regression for real-time high precision GPS signal enhancement. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2838–2847 (2019)

    Chapter  Google Scholar 

  • Nava, B., Coisson, P., Radicella, S.M.: A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 70(15), 1856–1862 (2008)

    Article  ADS  Google Scholar 

  • Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  • Rasmussen, C.E., Williams, C.KI.: Gaussian processes for machine learning. In: Adaptive Computation and Machine Learning, vol. xviii, p. 48. MIT Press, Cambridge (2006)

    Google Scholar 

  • Sun, A.Y., Wang, D., Xu, X.: Monthly streamflow forecasting using Gaussian process regression. J. Hydrol. 511, 72–81 (2014)

    Article  ADS  Google Scholar 

  • Taki, M., Rohani, A., Soheili-Fard, F., Abdeshahi, A.: Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. J. Clean. Prod. 172, 3028–3041 (2018)

    Article  Google Scholar 

  • Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., Atmos. 106, 7183–7192 (2001)

    Article  ADS  Google Scholar 

  • Tshisaphungo, M., Bosco Habarulema, J., Mckinnell, L.A.: Modeling ionospheric foF 2 response during geomagnetic storms using neural network and linear regression techniques. Adv. Space Res. 61(12), 2891–2903 (2018)

    Article  ADS  Google Scholar 

  • Tulunay, E., Senalp, E.T., Radicella, S.M., Tulunay, Y.: Forecasting total electron content maps by neural network technique. Radio Sci. 41, 4 (2006)

    Article  Google Scholar 

  • Wan, W., Ding, F., Ren, Z., Zhang, M., Liu, L., Ning, B.: Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci. China, Technol. Sci. 55(5), 1161–1168 (2012)

    Article  ADS  Google Scholar 

  • Yuan, J., Wang, K., Yu, T., Fang, M.: Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int. J. Mach. Tools Manuf. 48(1), 47–60 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samed Inyurt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inyurt, S., Hasanpour Kashani, M. & Sekertekin, A. Ionospheric TEC forecasting using Gaussian Process Regression (GPR) and Multiple Linear Regression (MLR) in Turkey. Astrophys Space Sci 365, 99 (2020). https://doi.org/10.1007/s10509-020-03817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03817-2

Keywords

Navigation