Skip to main content
Log in

Free vibration of joined cylindrical–hemispherical FGM shells

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is discretized using the semi-analytical generalized differential quadrature method. Considering the clamped and free boundary conditions for the end of the cylindrical shell and intersection continuity conditions, an eigenvalue problem is established to examine the vibration frequencies of the joined shell. After proving the efficiency and validity of the present method for the case of thin isotropic homogeneous joined shells, some parametric studies are carried out for the system of combined moderately thick cylindrical–spherical shell system. Novel results are provided for the case of FGM joined shells to explore the influence of power-law index and geometric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Izadi, M.H., Hosseini-Hashemi, S., Korayem, M.H.: Analytical and FEM solutions for free vibration of joined cross-ply laminated thick conical shells using shear deformation theory. Arch. Appl. Mech. 88, 2231–2246 (2018)

    Article  Google Scholar 

  2. Kang, J.H.: Vibration analysis of a circular cylinder closed with a hemi-spheroidal cap having a hole. Arch. Appl. Mech. 878, 183–199 (2017)

    Article  Google Scholar 

  3. Zhao, Y., Shi, D., Meng, H.: A unified spectro-geometric-Ritz solution for free vibration analysis of conical–cylindrical–spherical shell combination with arbitrary boundary conditions. Arch. Appl. Mech. 87, 961–988 (2017)

    Article  Google Scholar 

  4. Leissa, A.W.: Vibration of Shells. American Institute of Physics, New York (1993)

    Google Scholar 

  5. Qatu, M.S.: Vibration of Laminated Shells and Plates. Elsevier, New York (2004)

    MATH  Google Scholar 

  6. Soedel, W.: Vibrations of Shells and Plates. Marcel Dekker, New York (2004)

    Book  Google Scholar 

  7. Hu, W.C.L., Raney, J.P.: Experimental and analytical study of vibrations of joined shells. AIAA J. 5(5), 976–980 (1965)

    Article  Google Scholar 

  8. Yim, J.S., Sohn, D.S., Lee, Y.S.: Free vibration of clamped–free circular cylindrical shell with a plate attached at an arbitrary axial position. J. Sound Vib. 213(1), 75–88 (1998)

    Article  Google Scholar 

  9. Peterson, M.R., Body, D.E.: Free vibrations of circular cylinders with longitudinal, interior partitions. J. Sound Vib. 60(1), 45–62 (1978)

    Article  Google Scholar 

  10. Irie, T., Yamada, G., Myramoto, Y.: Free vibration of joined conical–cylindrical shells. J. Sound Vib. 95(1), 31–39 (1984)

    Article  Google Scholar 

  11. Saunders, H., Paslay, P.R.: Inextensional vibration of a sphere–cone shell combination. J. Acoust. Soc. Am. 31(5), 579–83 (1959)

    Article  MathSciNet  Google Scholar 

  12. Bagheri, H., Kiani, Y., Eslami, M.R.: Free vibration of joined conical–conical shell. Thin-Walled Struct. 120(1), 446–457 (2017)

    Article  Google Scholar 

  13. Bagheri, H., Kiani, Y., Eslami, M.R.: Free vibration of joined conical–cylindrical–conical shells. Acta Mech. 229(7), 2751–2764 (2018)

    Article  MathSciNet  Google Scholar 

  14. Bagheri, H., Kiani, Y., Eslami, M.R.: Free vibration of conical shells with intermediate ring support. Aerosp. Sci. Technol. 69(1), 321–332 (2017)

    Article  Google Scholar 

  15. Kerboua, Y., Lakis, A.A.: Numerical model to analyze the aerodynamic behavior of a combined conical–cylindrical shell. Aerosp. Sci. Technol. 58(1), 601–617 (2016)

    Article  Google Scholar 

  16. Galletly, G.D., Mistry, J.: The free vibrations of cylindrical shells with various end closures. Nucl. Eng. Des. 30(2), 249–268 (1974)

    Article  Google Scholar 

  17. Lee, Y.S., Yang, M.S., Kim, H.S., Kim, J.H.: A study on the free vibration of the joined cylindrical–spherical shell structures. Comput. Struct. 80(27), 2405–2414 (2002)

    Article  Google Scholar 

  18. Wu, S., Qu, Y., Huang, X., Hua, H.: Free vibration analysis on combined cylindrical–spherical shell. Appl. Mech. Mater. 226, 3–8 (2012)

    Google Scholar 

  19. Wu, S., Qu, Y., Huang, X., Hua, H.: Vibrations characteristics of joined cylindrical–spherical shell with elastic-support boundary conditions. J. Mech. Sci. Technol. 27(5), 1265–1272 (2013)

    Article  Google Scholar 

  20. Yusefzad, M., Bakhtiarinejad, F.: A study on the free vibration of the prestressed joined cylindrical–spherical shell structures. Appl. Mech. Mater. 390(1), 207–214 (2013)

    Article  Google Scholar 

  21. Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G.: A variational method for free vibration analysis of joined cylindrical–conical shells. J. Vib. Control 19(6), 2319–2334 (2013)

    Article  MathSciNet  Google Scholar 

  22. Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G.: A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations. Eur. J. Mech. A Solids 37(1), 200–215 (2013)

    Article  MathSciNet  Google Scholar 

  23. Qu, Y., Wu, S., Chen, Y., Hua, H.: Vibration analysis of ring-stiffened conical–cylindrical-spherical shells based on a modified variational approach. Int. J. Mech. Sci. 67(1), 72–84 (2013)

    Article  Google Scholar 

  24. Wu, S., Qu, Y., Hua, H.: Vibrations characteristics of joined cylindrical-spherical shell with elastic-support boundary conditions. J. Mech. Sci. Technol. 27(5), 1265–1272 (2013)

    Article  Google Scholar 

  25. Wu, S., Qu, Y., Hua, H.: Vibration characteristics of a spherical–cylindrical-spherical shell by a domain decomposition method. Mech. Res. Commun. 49(1), 17–26 (2013)

    Article  Google Scholar 

  26. Kang, J.H.: 3D vibration analysis of combined shells of revolution. Int. J. Struct. Stab. Dyn. 14(1), 1350023 (2014). (14 pages)

    Article  MathSciNet  Google Scholar 

  27. Kang, J.H.: Vibrations of a cylindrical shell closed with a hemi-spheroidal dome from a three-dimensional analysis. Acta Mech. 228(2), 531–545 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kang J.H.: 3D vibration analysis of combined shells of revolution. Int. J. Struct. Stab. Dyn. 19(2) (2019) Article Number 1950005 (23 pages)

  29. Tornabene, F.: Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 37–40, 2911–2935 (2009)

    Article  Google Scholar 

  30. Zghal, S., Frikha, A., Dammak, F.: Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. Part B Eng. 150, 165–183 (2018)

    Article  Google Scholar 

  31. Tornabene, F., Liverani, A., Caligiana, G.: FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations. Compos. Part B Eng. 53(6), 446–470 (2011)

    Google Scholar 

  32. Frikha, A., Zghal, S., Dammak, F.: Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp. Sci. Technol. 78, 438–451 (2018)

    Article  Google Scholar 

  33. Tornabene, F., Reddy, J.N.: FGM and laminated doubly-curved and degenerate shells resting on nonlinear elastic foundations: a GDQ solution for static analysis with a posteriori stress and strain recovery. J. Indian Inst. Sci. 93(4), 635–688 (2013)

    MathSciNet  Google Scholar 

  34. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–459 (2019)

    Article  Google Scholar 

  35. Tornabene, F., Fantuzzi, N., Viola, E., Batra, R.C.: Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 119, 67–89 (2019)

    Article  Google Scholar 

  36. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. Struct. 89, 187–218 (2016)

    Google Scholar 

  37. Akbari, M., Kiani, Y., Aghdam, M.M., Eslami, M.R.: Free vibration of FGM Lèvy conical panels. Compos. Struct. 116(1), 732–746 (2014)

    Article  Google Scholar 

  38. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Application. CRC Press, Boca Raton (2003)

    Google Scholar 

  39. Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  40. Gould, P.L.: Analysis of Shells and Plates. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  41. Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eslami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

After applying Eq. (24) to the motion equations (17) and (18), the following system of equations is extracted.

$$\begin{aligned}&A_{11}U_{,xx}^{\mathrm{c}}+\frac{A_{12}}{R}\left( -n V_{,x}^{\mathrm{c}}+ W_{,x}^{\mathrm{c}}\right) +B_{11}\Phi _{,xx}^{\mathrm{c}}-\frac{B_{12}}{R}n\Phi _{\theta ,x}^{\mathrm{c}}\nonumber \\&\quad +\,\frac{A_{66}}{R^2 } \left( -n^{2} U^{\mathrm{c}} - n RV_{,x}^{\mathrm{c}}\right) +\frac{B_{66}}{R^2}\left( -n^{2}\Phi _x^{\mathrm{c}} -n r\left( x\right) \Phi _{\theta , x}^{\mathrm{c}}\right) +\,I_1\omega ^{2}U^{\mathrm{c}}+I_2\omega ^{2}\Phi _x^{\mathrm{c}} =0\end{aligned}$$
(A.1)
$$\begin{aligned}&\frac{A_{12}n}{R }U_{,x}^{\mathrm{c}}+\frac{A_{22}}{R^2 }\left( -n^{2}V^{\mathrm{c}}+n W^{\mathrm{c}}\right) +\frac{A_{66}}{R }\left( n U_{,x}^{\mathrm{c}}+R V_{,xx}^{\mathrm{c}}\right) +\,\frac{B_{12}}{R }n\Phi _{x,x}^{\mathrm{c}}+\frac{B_{22}}{R^2}\left( -n^{2}\Phi _\theta ^{\mathrm{c}}\right) \nonumber \\&\quad +\frac{B_{66}}{R}\left( n\Phi _{x,x}^{\mathrm{c}}+R \Phi _{\theta ,xx}^{\mathrm{c}}\right) +\,\frac{\kappa A_{44} }{R^2}\left( -V^{\mathrm{c}} +R \Phi _\theta ^{\mathrm{c}} +n W^{\mathrm{c}}\right) +I_1\omega ^{2}V^{\mathrm{c}}+I_2\omega ^{2}\Phi _\theta ^{\mathrm{c}}=0\end{aligned}$$
(A.2)
$$\begin{aligned}&-\,\frac{A_{12} }{R^2}U_{,x}^{\mathrm{c}}-\frac{A_{22} }{ R^2}\left( -nV^{\mathrm{c}}+ W^{\mathrm{c}} \right) -\frac{B_{12} }{R}\Phi _{x,x}^{\mathrm{c}}+\frac{B_{22} }{R^2}n\Phi _{\theta }^{\mathrm{c}} \nonumber \\&\quad +\,\kappa A_{55}\left( \Phi _{x,x}^{\mathrm{c}}+W_{,xx}^{\mathrm{c}} \right) +\frac{\kappa A_{44}}{R^2} \left( n V^{\mathrm{c}}-n R \Phi _\theta -n^{2}W^{\mathrm{c}}\right) +I_1\omega ^{2}W^{\mathrm{c}}=0\end{aligned}$$
(A.3)
$$\begin{aligned}&B_{11}U_{,xx}^{\mathrm{c}}+\frac{B_{12}}{R }\left( -n V_{,x}^{\mathrm{c}}+ W_{,x}^{\mathrm{c}}\right) +D_{11}\Phi _{,xx}^{\mathrm{c}}-\frac{D_{12}n}{R}\Phi _{\theta ,x}^{\mathrm{c}}\nonumber \\&\quad +\,\frac{B_{66}}{R^2} \left( -n^{2} U^{\mathrm{c}} - n RV_{,x}^{\mathrm{c}}\right) +\frac{D_{66}}{R^2}\left( -n^{2}\Phi _x^{\mathrm{c}} -n R \Phi _{\theta ,x}^{\mathrm{c}}\right) \nonumber \\&\quad -\,\kappa A_{55}\left( \Phi _x^{\mathrm{c}} +W_{,x}^{\mathrm{c}}\right) +I_2\omega ^{2}U^{\mathrm{c}} +I_3\omega ^{2} \Phi _x^{\mathrm{c}} =0 \end{aligned}$$
(A.4)
$$\begin{aligned}&\frac{B_{12}}{R }nU_{,x}^{\mathrm{c}}+\frac{B_{22}}{R^2}\left( -n^{2}V^{\mathrm{c}}+n W^{\mathrm{c}}\right) +\frac{B_{66}}{R }\left( n U_{,x}^{\mathrm{c}}+RV_{,xx}^{\mathrm{c}}\right) \nonumber \\&\quad +\,\frac{D_{12}}{R}n\Phi _{x,x}^{\mathrm{c}}+\frac{D_{22}}{R^2}\left( -n^{2}\Phi _\theta ^{\mathrm{c}}\right) +\frac{D_{66}}{R}\left( n\Phi _{x,x}^{\mathrm{c}}+R \Phi _{\theta ,xx}^{\mathrm{c}}\right) \nonumber \\&\quad +\,\frac{\kappa A_{44}}{R}\left( - V^{\mathrm{c}}+R\Phi _\theta ^{\mathrm{c}} +n W^{\mathrm{c}} \right) +I_2\omega ^{2}V^{\mathrm{c}}+I_3\omega ^{2}\Phi _\theta ^{\mathrm{c}} =0\end{aligned}$$
(A.5)
$$\begin{aligned}&\frac{1}{R^2}\left\{ A_{11}U_{,\phi \phi }^{\mathrm{s}}+A_{11}\cot \left( \phi \right) U_{,\phi }^{\mathrm{s}}-\frac{A_{66}}{\sin ^2\left( \phi \right) }n^2U^{\mathrm{s}}-\left( A_{11}\cot \left( \phi \right) ^{2}+A_{12}+A_{66}\right) U^{\mathrm{s}}\right. \nonumber \\&\quad -\,\frac{\left( A_{12}+A_{66}\right) }{\sin \left( \phi \right) }nV_{,\phi }^{\mathrm{s}}+\left( A_{11}+A_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }nV^{\mathrm{s}}+\left( A_{11}+A_{12}+A_{66}\right) W_{,\phi }^{\mathrm{s}}\nonumber \\&\quad +\,B_{11}\Phi _{\phi ,\phi \phi }^{\mathrm{s}}+B_{11}\cot \left( \phi \right) \Phi _{\phi ,\phi }^{\mathrm{s}}-\frac{B_{66}}{\sin ^2\left( \phi \right) }n^2 \Phi _{\phi }^{\mathrm{s}}- \left( B_{11}\cot ^2\left( \phi \right) +B_{12}-A_{66}R\right) \Phi _{\phi }^{\mathrm{s}}\nonumber \\&\quad \left. -\,\frac{\left( B_{12}+B_{66}\right) }{\sin \left( \phi \right) }n\Phi _{\theta ,\phi }^{\mathrm{s}}+\left( B_{11}+B_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }n\Phi _{\theta }^{\mathrm{s}}\right\} +I_1{\omega }^2U^{\mathrm{s}}+I_2\omega ^{2}\Phi _{\phi }^{\mathrm{s}}=0 \end{aligned}$$
(A.6)
$$\begin{aligned}&\frac{1}{R^2}\left\{ \frac{\left( A_{12}+A_{66}\right) }{\sin \left( \phi \right) }nU_{,\phi }^{\mathrm{s}}+\left( A_{11}+A_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }nU^{\mathrm{s}}+A_{66}V_{,\phi \phi }^{\mathrm{s}}\right. \nonumber \\&\quad +\,A_{66}\cot \left( \phi \right) V_{,\phi }^{\mathrm{s}}-\frac{A_{11}}{\sin ^2\left( \phi \right) }n^2V^{\mathrm{s}}+\left( \frac{A_{66}}{\sin ^2\left( \phi \right) }-2A_{66}\cot \left( \phi \right) ^2-A_{66}\right) V^{\mathrm{s}}\nonumber \\&\quad +\,\frac{\left( A_{11}+A_{12}+A_{66}\right) }{\sin \left( \phi \right) }nW^{\mathrm{s}}+\frac{\left( B_{12}+B_{66}\right) }{\sin \left( \phi \right) }n\Phi _{\phi ,\phi }^{\mathrm{s}}+\left( B_{11}+B_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }n\Phi _{\phi }^{\mathrm{s}}\nonumber \\&\quad +\,B_{66}\Phi _{\theta ,\phi \phi }^{\mathrm{s}}+B_{66}\cot \left( \phi \right) \Phi _{\theta ,\phi }^{\mathrm{s}}-\frac{B_{11}}{\sin ^2\left( \phi \right) }n^2\Phi _{\theta }^{\mathrm{s}}\nonumber \\&\quad \left. +\,\left( \frac{B_{66}}{\sin ^2\left( \phi \right) }-2B_{66}\cot ^2\left( \phi \right) +A_{66}R\right) \Phi _{\theta }^{\mathrm{s}}\right\} +I_1{\omega }^2V^{\mathrm{s}}+I_2{\omega }^2\Phi _{\theta }^{\mathrm{s}}=0 \end{aligned}$$
(A.7)
$$\begin{aligned}&\frac{1}{R^2}\left\{ -\left( A_{11}+A_{12}+A_{66}\right) U_{,\phi }^{\mathrm{s}}-\left( A_{11}+A_{12}+A_{66}\right) \cot \left( \phi \right) U^{\mathrm{s}}\right. \nonumber \\&\quad +\,\frac{\left( A_{11}+A_{12}+A_{66}\right) }{\sin \left( \phi \right) }nV^{\mathrm{s}}+A_{66}W_{,\phi \phi }^{\mathrm{s}}-\frac{A_{66}}{\sin \left( \phi \right) ^{2}}n^2W^{\mathrm{s}}+A_{66}\cot \left( \phi \right) W_{,\phi }^{\mathrm{s}}\nonumber \\&\quad -\,2\left( A_{11}+A_{12}\right) W^{\mathrm{s}}-\left( B_{11}+B_{12}-A_{66}R\right) \Phi _{\phi .\phi }^{\mathrm{s}}\nonumber \\&\quad \left. -\,\left( B_{11}+B_{12}-A_{66}R\right) \cot \left( \phi \right) \Phi _{\phi }^{\mathrm{s}}+\frac{\left( B_{11}+B_{12}-A_{66}R\right) }{\sin \left( \phi \right) }n\Phi _{\theta }^{\mathrm{s}}\right\} +I_1{\omega }^2W^{\mathrm{s}}=0 \end{aligned}$$
(A.8)
$$\begin{aligned}&\frac{1}{R^2}\left\{ B_{11}U_{,\phi \phi }^{\mathrm{s}}+B_{11}\cot \left( \phi \right) U_{,\phi }^{\mathrm{s}}-\frac{B_{66}}{\sin ^2\left( \phi \right) }n^2U^{\mathrm{s}}-\left( B_{11}\cot ^2\left( \phi \right) +B_{12}-A_{66}R\right) U^{\mathrm{s}}\right. \nonumber \\&\quad -\,\frac{\left( B_{12}+B_{66}\right) }{\sin \left( \phi \right) }nV_{,\phi }^{\mathrm{s}}+\left( B_{11}+B_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }nV^{\mathrm{s}}+\left( B_{11}+B_{12}-A_{66}R\right) W_{,\phi }^{\mathrm{s}}\nonumber \\&\quad +\,D_{11}\Phi _{\phi ,\phi \phi }^{\mathrm{s}}+D_{11}\cot \left( \phi \right) \Phi _{\phi ,\phi }^{\mathrm{s}}-\frac{D_{66}}{\sin ^2\left( \phi \right) }n^2 \Phi _{\phi }^{\mathrm{s}}- \left( D_{11}\cot ^2\left( \phi \right) +D_{12}+A_{66}R^{2}\right) \Phi _{\phi }^{\mathrm{s}}\nonumber \\&\quad \left. -\frac{\left( D_{12}+D_{66}\right) }{\sin \left( \phi \right) }n\Phi _{\theta ,\phi }^{\mathrm{s}}+\left( D_{11}+D_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }n\Phi _{\theta }^{\mathrm{s}}\right\} +I_2{\omega }^2U^{\mathrm{s}}+I_3\omega ^{2}\Phi _{\phi }^{\mathrm{s}}=0 \end{aligned}$$
(A.9)
$$\begin{aligned}&\frac{1}{R^2}\left\{ \frac{\left( B_{12}+B_{66}\right) }{\sin \left( \phi \right) }nU_{,\phi }^{\mathrm{s}}+\left( B_{11}+B_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }nU^{\mathrm{s}}+B_{66}V_{,\phi \phi }^{\mathrm{s}}\right. \nonumber \\&\quad +\,B_{66}\cot \left( \phi \right) V_{,\phi }^{\mathrm{s}}-\frac{B_{11}}{\sin ^2\left( \phi \right) }n^2V^{\mathrm{s}}+\left( \frac{B_{66}}{\sin ^2\left( \phi \right) }-2B_{66}\cot ^2\left( \phi \right) +A_{66}R\right) V^{\mathrm{s}}\nonumber \\&\quad +\,\frac{\left( B_{11}+B_{12}-A_{66}R\right) }{\sin \left( \phi \right) }nW^{\mathrm{s}}+\frac{\left( D_{12}+D_{66}\right) }{\sin \left( \phi \right) }n\Phi _{\phi ,\phi }^{\mathrm{s}}+\left( D_{11}+D_{66}\right) \frac{\cos \left( \phi \right) }{\sin ^2\left( \phi \right) }n\Phi _{\phi }^{\mathrm{s}}\nonumber \\&\quad +\,D_{66}\Phi _{\theta ,\phi \phi }^{\mathrm{s}}+D_{66}\cot \left( \phi \right) \Phi _{\theta ,\phi }^{\mathrm{s}}-\frac{D_{11}}{\sin ^2\left( \phi \right) }n^2\Phi _{\theta }^{\mathrm{s}}\nonumber \\&\quad \left. +\,\left( \frac{D_{66}}{\sin ^2\left( \phi \right) }-2D_{66}\cot ^2\left( \phi \right) -A_{66}R^{2}\right) \Phi _{\theta }^{\mathrm{s}}\right\} +I_2{\omega }^2V^{\mathrm{s}}+I_3{\omega }^2\Phi _{\theta }^{\mathrm{s}}=0. \end{aligned}$$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Kiani, Y., Bagheri, N. et al. Free vibration of joined cylindrical–hemispherical FGM shells. Arch Appl Mech 90, 2185–2199 (2020). https://doi.org/10.1007/s00419-020-01715-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01715-1

Keywords

Navigation