Skip to main content

Advertisement

Log in

Thermal radiation and Hall effects in mixed convective peristaltic transport of nanofluid with entropy generation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The enhancement of energy by introducing nanoparticles is a hot topic in the present century, due to industrial and technological applications. Therefore, current article investigates the peristaltic flow of \(\mathrm{Ag}{-}\mathrm{H}_2\mathrm{O}\) nanofluid with entropy generation through a uniform channel. Hall and Radiation effects are incorporated. Two-phase formulation for nanofluid is employed. Long-wavelength approximation is used in the mathematical modelling. Built-in numerical solver NDSolve is utilized. Numerical results of the coupled equations are sketched for several quantities of interest. Outcomes of the study reveals that entropy significantly reduces for large values of Hall parameter, whereas opposite behaviour is noted for velocity. Increase in the values of radiation parameter reduces the velocity, temperature, and entropy generation. Increase in Bejan number is observed for enhancement in Brinkman number. Rate of heat transfer at walls increases when heat source parameter is increased. Additionally, comparison of different nanoparticles is also furnished through tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

d :

 Half-width of the channel

h :

 Non-dimensional wall in wave frame

\(a_{1}\) :

 Amplitude of the wave

c :

 Wave velocity

\(\lambda\) :

 Wavelength

\(\delta\) :

 Wave number

\(\overline{t}\) :

 Dimensional time parameter

g :

 Acceleration due to gravity

\(\varepsilon\) :

 Dimensional heat generation/absorption parameter

\(\overline{Q}\) :

 Dimensional flow rate in laboratory frame

\(\overline{q}\) :

 Dimensional flow rate in wave frame

F :

 Dimensionless flow rate in wave frame

\(\eta\) :

 Dimensionless flow rate in laboratory frame

K :

 Thermal conductivity

\(B_0\) :

 Applied magnetic field

Pr :

 Prandtl number

Br :

 Brinkman number

Ec :

 Eckert number

M :

 Hartmann number

Nr :

 Radiation number

Gr :

 Grashoff number

Re :

 Reynolds number

\(\alpha\) :

 Inclination angle

\(\rho\) :

 Density

\(\sigma\) :

 Electric conductivity

\(\sigma ^*\) :

 Stefan–Boltzmann constant

\(k^*\) :

 Mean absorption coefficient

\(\psi\) :

 Stream function

\(\phi\) :

 Nanoparticles volume fraction

\(\theta\) :

 Dimensionless temperature

f :

for fluid phase

p :

 For particle phase

\(\sigma _{\mathrm{eff}}\) :

 For effective electric conductivity

\(K_{\mathrm{eff}}\) :

 For effective thermal conductivity

References

  • Abbasi FM, Alsaedi A, Hayat T (2014) Peristaltic transport of Eyring–Powell fluid in a curved channel. J Aerosp Eng 27:04014037

    Article  Google Scholar 

  • Abbasi FM, Hayat T, Ahmad B (2015) Peristalsis of silver–water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq 207:248–255

    Article  CAS  Google Scholar 

  • Abbasi FM, Hayat T, Ahmad B (2015) Peristaltic transport of copper–water nanofluid saturating porous medium. Phys E 67:47–53

    Article  CAS  Google Scholar 

  • Abbasi FM, Shanakhat I, Shehzad SA (2019) Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater 474:434–441

    Article  CAS  Google Scholar 

  • Ahmed R, Ali N, Javid K (2019) Heat and mass transfer effects on the peristaltic flow of Sisko fluid in a curved channel. Therm Sci 23:331–345

    Article  Google Scholar 

  • Akbar NS (2015) Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy 82:23–30

    Article  Google Scholar 

  • Akbar NS, Nadeem S (2011) Endoscopic effects on peristaltic flow of a nanofluid. Commun Theor Phys 56:761–768

    Article  Google Scholar 

  • Akbar NS, Raza M, Ellahi R (2016) Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Appl Nanosci 6:359–370

    Article  CAS  Google Scholar 

  • Arikoglu A, Ozkol I, Komurgoz G (2008) Effect of slip on entropy generation in a single rotating disk in MHD flow. Appl Energy 85:1225–1236

    Article  CAS  Google Scholar 

  • Asha SK, Sunitha G (2019a) Effect of joule heating and MHD on peristaltic blood flow of Eyring–Powell nanofluid in a non-uniform channel. J Taibah Univ Sci 13:155–68

  • Asha SK, Sunitha G (2019b) Effect of joule heating and MHD on peristaltic blood flow of Eyring-Powell nanofluid in a non-uniform channel. J Taibah Univ Sci 13:155–168

  • Bejan A (1979) A study of entropy generation in fundamental convective heat transfer. ASME J Heat Transf 101:718–725

    Article  Google Scholar 

  • Bejan A (1996) Entropy generation minimization. CRC Press, New York

    Google Scholar 

  • Buongiorno J (2005) A non-homogeneous equilibrium model for convective transport in flowing nanofluids. In: Proceedings of the ASME summer heat transfer conference

  • Chen CK, Yang YT, Chang KH (2010) Entropy generation of laminar-forced convection along the wavy surface. Int J Exergy 7:564–578

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Division 231:99–105

    CAS  Google Scholar 

  • Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11:797–817

    Article  CAS  Google Scholar 

  • Farooq S, Hayat T, Alsaedi A, Asghar S (2018) Mixed convection peristalsis of carbon nanotubes with thermal radiation and entropy generation. J Mol Liq 250:451–467

    Article  CAS  Google Scholar 

  • Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech 35:669

    Article  Google Scholar 

  • Gireesha BJ, Mahanthesh B, Thammanna GT, Sampathkumar PB (2018) Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J Mol Liq 256:139–147

    Article  CAS  Google Scholar 

  • Guo SZ, Li Y, Jiang JS, Xie HQ (2010) Nanofluids containing \(\gamma -Fe_{2}O_{3}\) nanoparticles and their heat transfer enhancements. Nanoscale Res 7:1222

    Article  Google Scholar 

  • Hayat T, Abbasi FM, Alsaedi A (2015) Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects. J Magn Magn Mater 382:104–110

    Article  Google Scholar 

  • Hayat T, Aslam N, Rafiq M, Alsaadi FE (2017) Hall and Joule heating effects on peristaltic flow of Powell–Eyring liquid in an inclined symmetric channel. Results Phys. 7:518–528

    Article  Google Scholar 

  • Hayat T, Hussain Q, Ali N (2008) Influence of partial slip on the peristaltic flow in a porous medium. Phys A 387:3399

    Article  Google Scholar 

  • Hayat T, Rafiq M, Ahmad B, Asghar S (2017) Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame. Int J Heat Mass Transf 108:1775–1786

    Article  Google Scholar 

  • Hayat T, Zahir H, Tanveer A, Alsaedi A (2016) Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid. J Magn Magn Mater 407:321–327

    Article  CAS  Google Scholar 

  • Jaffrin MY (1973) Intertia and streamline curvature effects in peristaltic pumping. Int J Eng Sci 11:681

    Article  Google Scholar 

  • Latham TW (1996) Fluid Motion in a Peristaltic Pump, Master’s thesis, Massachusetts Institute of Technology

  • Mahanthesh B, Gireesha BJ, Thammanna GT, Shehzad SA, Abbasi FM, Gorla RSR (2018) Nonlinear convection in nano Maxwell fluid with nonlinear thermal radiation: a three-dimensional study. Alex Eng J 57:1927–1935

    Article  Google Scholar 

  • Noreen S (2013) Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field. PLoS One 8:e78770

    Article  Google Scholar 

  • Noreen S, Ahmed B, Hayat T (2013) Mixed convection flow of nanofluid in presence of an inclined magnetic field. PLoS One 8:e73248

    Article  CAS  Google Scholar 

  • Pakdemirli M, Yilbas BS (2006) Entropy generation in a pipe due to Non-Newtonian fluid flow: constant viscosity case. Sadhana 31:21–29

    Article  Google Scholar 

  • Ranjit NK, Shit GC, Tripathi D (2019) Entropy generation and Joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel. Int J Mech Sci 153:430–444

    Article  Google Scholar 

  • Rao AR, Mishra M (2004) Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech 168:35–59

    Article  Google Scholar 

  • Rashidi MM, Freidoonimehr N (2014) Analysis of entropy generation in MHD stagnation point flow in porous media with heat transfer. Int J Comput Methods Eng 15:345–355

    Article  Google Scholar 

  • Shit GC, Roy M, Ng EYK (2010) Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel. Int J Numer Methods Biomed Eng 26:1380–1403

    Article  Google Scholar 

  • Srivastava LM, Srivastava VP (1985) Interaction of peristaltic flow with pulsatile flow in a circular cylindrical tube. J Biomech 18:247

    Article  CAS  Google Scholar 

  • Sucharitha G, Lakshminarayana P, Sandeep N (2017) Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int J Mech Sci 131:52–62

    Article  Google Scholar 

  • Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Yasir Akbar gratefully acknowledges the financial support provided by Higher Education Commission (HEC) of Pakistan through Ph.D. indigenous scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, Y., Abbasi, F.M. & Shehzad, S.A. Thermal radiation and Hall effects in mixed convective peristaltic transport of nanofluid with entropy generation. Appl Nanosci 10, 5421–5433 (2020). https://doi.org/10.1007/s13204-020-01446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01446-3

Keywords

Navigation