Skip to main content
Log in

Evaluating Different Methodologies for Bioprospecting Actinomycetes in Canary Islands Soils

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Actinomycetes are a wide group of Gram positive prokaryotes, the soil being their most characteristic habitat, where they play important ecological functions. Their immense biotechnological potential as producers of bioactive molecules of great commercial and industrial interest is exemplified by most antibiotics for clinical use being derived from this group of bacteria. In this work several methodologies and culture media were tested for the isolation of actinomycetes in soils from three different edafoclimatic areas of Tenerife (Canary Islands, Spain): an arid zone of the southeast coast of the island, a humid area in the laurel forest and the Canary high mountain. The results of this work evidenced that just an air drying of the sample during 7 days (pretreatment) produces high counts of actinomycetes versus non-actinomycetes in the three soils and in any of the culture media studied, making unnecessary post physical and chemical treatments. However, the only method that produced an exclusive isolation of actinomycetes was the use of 0.22-μm filters as a physical barrier, and hence being a tool of unquestionable utility to estimate actinomycetes populations in soil.

The analysis by BOX rep-PCR determined that the richness and genetic diversity of the isolates of these localities are very high. The greatest similarities were, with one exception, found between strains from the same locations. Izaña was one that obtained the highest diversity. Regarding the biotecnology potential as antibiotic produces isolates from Güimar soils are the most promising as 7 out of 10 isolates showed some antibiotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chavan DV, Mulaje SS, Mohalkar RY (2013) A review on actinomycetes and their biotechnological application. Int J Pharm Sci Res 4:1730–1742

    Google Scholar 

  2. Parada RB, Marguet ER, Vallejo M (2017) Aislamiento y caracterización parcial de actinomicetos de suelos con actividad antimicrobiana contra bacterias multidrogo-resistentes. Rev Colomb Biotecnol 19:17–23

    Article  Google Scholar 

  3. Hamaki T, Suzuki M, Fudou R et al (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485–492. https://doi.org/10.1263/jbb.99.485

    Article  PubMed  CAS  Google Scholar 

  4. León J, Liza L, Soto I et al (2007) Actinomycetes bioactivos de sedimento marino de la costa central del Perú. Rev Peru Biol 14:259–270

    Google Scholar 

  5. Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe-Am Soc Microbiol 2:125–132

    Google Scholar 

  6. Clark AM (1996) Natural products as a resource for new drugs. Pharm Res 13:1133–1141

    Article  CAS  Google Scholar 

  7. Genilloud O, González I, Salazar O et al (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389. https://doi.org/10.1007/s10295-010-0882-7

    Article  PubMed  CAS  Google Scholar 

  8. Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. https://doi.org/10.1007/s002030100345

    Article  PubMed  CAS  Google Scholar 

  9. Azaz AD, Pekel O (2002) Comparison of soil fungi flora in burnt and unburnt forest soils in the vicinity of Kargıcak (Alanya, Turkey). Turk J Bot 26:409–416

    Google Scholar 

  10. Arechavaleta M, Rodríguez S, Zurita N, Gracía A (2010) Lista de especies silvestres de Canarias hongos, plantas y animales terrestres, 2009. Gobierno de Canarias, Santa Cruz de Tenerife

    Google Scholar 

  11. Rodríguez M, Neris J, Tejedor M, Jiménez C (2010) Soil temperature regimes from different latitudes on a subtropical island (Tenerife, Spain). Soil Sci Soc Am J 74:1662–1669. https://doi.org/10.2136/sssaj2009.0436

    Article  CAS  Google Scholar 

  12. Monteverde CA (2013) Contribución al conocimiento de los regímenes de humedad de los suelos de la isla de Tenerife. PhD Thesis, Universidad de La Laguna, Servicio de Publicaciones

  13. Caldas EF, Salguero MT, Quantin P (1982) Suelos de regiones volcánicas: Tenerife. Editorial CSIC-CSIC Press, Islas Canarias

    Google Scholar 

  14. Hong K, Gao AH, Xie QY et al (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44. https://doi.org/10.3390/md7010024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 22:12–19. https://doi.org/10.3209/saj.SAJ220103

    Article  Google Scholar 

  16. Hayakawa M, Nonomura H (1989) A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica 3:95–104

    Article  Google Scholar 

  17. Rodríguez-Zaragoza S, Dorantes I, Velasco-Velasco J, Ferrera-Cerrato R (2004) Impacto de la fumigación con bromuro de metilo en tipos morfológicos de amebas desnudas de un suelo agrícola. Terra Latinoam 22:197–205

    Google Scholar 

  18. Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608. https://doi.org/10.1128/AEM.69.9.5603-5608.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mohseni M, Norouzi H, Hamedi J, Roohi A (2013) Screening of antibacterial producing actinomycetes from sediments of the Caspian sea. Int J Mol Cell Med 2:64–71

    PubMed  PubMed Central  Google Scholar 

  20. Hirsch CF, Christensen DL (1983) Novel method for selective isolation of actinomycetes. Appl Environ Microbiol 46:925–929

    Article  CAS  Google Scholar 

  21. Lanoot B, Vancanneyt M, Dawyndt P et al (2004) BOX-PCR Fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27:84–92. https://doi.org/10.1078/0723-2020-00257

    Article  PubMed  CAS  Google Scholar 

  22. Maldonado LA, Stach JEM, Ward AC et al (2008) Characterisation of micromonosporae from aquatic environments using molecular taxonomic methods. Antonie Van Leeuwenhoek 94:289–298. https://doi.org/10.1007/s10482-008-9244-0

    Article  PubMed  CAS  Google Scholar 

  23. Duran Wendt DR (2015) Native bradyrhizobial symbionts of Lupinus mariae-josephae, a unique endemism thriving in alkaline soils in eastern Spain. Doctoral, E.T.S.I. Agrónomos (UPM)

  24. Shirling ET, Gottlieb D (1966) Methods for characterization of Streptomyces species1. Int J Syst Evol Microbiol 16:313–340

    Google Scholar 

  25. Pérez-Hernández A, González M, González C et al (2017) BcSUN1, a B. cinerea SUN-Family protein, is involved in virulence. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00035

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kämpfer P (2006) The family Streptomycetaceae, part I: taxonomy. In: Dworkin M, Falkow S, Rosenberg E, et al. (eds) The prokaryotes. Springer, New York, NY, pp 538–604

    Chapter  Google Scholar 

  27. Li Q, Chen X, Jiang Y, Jiang C (2016) Morphological identification of actinobacteria. In: Actinobacteria-basics and biotechnological applications. InTech

  28. Undabarrena A, Beltrametti F, Claverías FP et al (2016) Exploring the diversity and antimicrobial potential of marine actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01135

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khamna S, Yokota A, Lumyong S (2009) L-Asparaginase production by actinomycetes isolated from some Thai medicinal plant rhizosphere soils. Int J Integr Biol 6:22–26

    CAS  Google Scholar 

  30. Vieira FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 160:197–202. https://doi.org/10.1016/j.micres.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  31. Tsao PH, Leben C, Keitt GW (1960) An enrichment method for isolating actinomycetes that produce diffusible antifungal antibiotics. Phytopathology 50:88–89

    Google Scholar 

  32. Natsume M, Yasui K, Marumo S (1989) Calcium ion regulates aerial mycelium formation in actinomycetes. J Antibiot (Tokyo) 42:440–447. https://doi.org/10.7164/antibiotics.42.440

    Article  CAS  Google Scholar 

  33. Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72:257–262. https://doi.org/10.1016/j.mimet.2007.12.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Davelos AL, Xiao K, Samac DA et al (2004) Spatial variation in Streptomyces genetic composition and diversity in a Prairie soil. Microb Ecol 48:601–612. https://doi.org/10.1007/s00248-004-0031-9

    Article  PubMed  CAS  Google Scholar 

  35. Mcinnes A (2004) Structure and diversity among rhizobial strains, populations and communities-a review. Soil Biol Biochem 36:1295–1308. https://doi.org/10.1016/j.soilbio.2004.04.011

    Article  CAS  Google Scholar 

  36. Kumbhar C, Watve M (2013) Why antibiotics: a comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Nat Sci 5:26. https://doi.org/10.4236/ns.2013.54A005

    Article  CAS  Google Scholar 

  37. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606. https://doi.org/10.1128/MMBR.64.3.573-606.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by predoctoral program of Consejería de Economía, Industria, Comercio y Conocimiento del Gobierno de Canarias and co-financing by Fondo Social Europeo (Grant Number TESIS2017010078) and Nertalab S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Hernández-Bolaños.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Bolaños, E., Montesdeoca-Flores, D., Abreu-Yanes, E. et al. Evaluating Different Methodologies for Bioprospecting Actinomycetes in Canary Islands Soils. Curr Microbiol 77, 2510–2522 (2020). https://doi.org/10.1007/s00284-020-02030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02030-2

Navigation