Skip to main content
Log in

Numerical Simulation of Acoustic Fields Induced by a Flow Past an Oscillating Solid

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The paper presents two computational techniques that do not require a change in the topology of the mesh to simulate the flow around oscillating bodies. The first technique uses the immersed boundary method, the second technique uses the method of deformed meshes. The capabilities of these two approaches are demonstrated by solving model problems in a two-dimensional formulation for simulating acoustic fields generated by an oscillating cylinder, both single and in the presence of a fixed cylindrical body, in a subsonic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. A detailed comparison of the calculation results by the IBC method and the classical method using a mesh matched to the body is given in [24], where the problem of modeling an unsteady turbulent flow near a three-dimensional cylinder was considered.

REFERENCES

  1. C. S. Peskin, “Flow patterns around heart valves: a numerical method,” J. Comput. Phys. 10, 252–271 (1972).

    Article  Google Scholar 

  2. R. Mittal and G. Iaccarino, “Immersed boundary methods,” Ann. Rev. Fluid Mech. 37, 239–261 (2005).

    Article  MathSciNet  Google Scholar 

  3. Ph. Angot, C. H. Bruneau, and P. Fabrie, “A penalization method to take into account obstacles in incompressible viscous flows,” Numer. Math. 81, 497–520 (1991).

    Article  MathSciNet  Google Scholar 

  4. E. Feireisl, J. Neustupa, and J. Stebel, “Convergence of a Brinkman-type penalization for compressible fluid flows,” J. Differ. Equat. 250, 596–606 (2011).

    Article  MathSciNet  Google Scholar 

  5. O. V. Vasilyev and N. K.-R. Kevlahanv, “Hybrid wavelet collocation-Brinkman penalization method for complex geometry flows,” Int. J. Numer. Meth. Fluids 40, 531–538 (2002).

    Article  MathSciNet  Google Scholar 

  6. O. Boiron, G. Chiavassa, and R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles,” Comput. Fluids 38, 703–714 (2009).

    Article  MathSciNet  Google Scholar 

  7. Q. Liu and O. V. Vasilyev, “A Brinkman penalization method for compressible flows in complex geometries,” J. Comput. Phys. 227, 946–966 (2007).

    Article  MathSciNet  Google Scholar 

  8. Y. Bae and Y. J. Moon, “On the use of Brinkman penalization method for computation of acoustic scattering from complex boundaries,” Comput. Fluids 55, 48–56 (2012).

    Article  MathSciNet  Google Scholar 

  9. I. V. Abalakin, N. S. Zhdanova, and T. K. Kozubskaya, “Immersed boundary method for numerical simulation of inviscid compressible flows,” Comput. Math. Math. Phys. 58, 1411–1419 (2018).

    Article  MathSciNet  Google Scholar 

  10. R. Komatsu, W. Iwakami, and Y. Hattori, “Direct numerical simulation of aeroacoustic sound by volume penalization method,” Comput. Fluids 130, 24–36 (2016).

    Article  MathSciNet  Google Scholar 

  11. D. J. Mavriplis, “Mesh generation and adaptivity for complex geometries and flows,” in Handbook of Computational Fluid Mechanics, Ed. by R. Peyret (Elsevier, Amsterdam, 1996), pp. 417–459.

    Google Scholar 

  12. P. Renzoni et al., “EROS a common European Euler code for the analysis of the helicopter rotor flowfield,” Prog. Aerospace Sci. 36, 437–485 (2000).

    Article  Google Scholar 

  13. R. Steijl and G. Barakos, “Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics,” Int. J. Numer. Meth. Fluids 58, 527–549 (2008).

    Article  Google Scholar 

  14. B. E. Pobedria and D. V. Georgievskii, Fundamentals of Continuum Mechanics. Lecture Course (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  15. I. V. Abalakin, V. A. Anikin, P. A. Bakhvalov, V. G. Bobkov, and T. K. Kozubskaya, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor,” Fluid Dyn. 51, 419–433 (2016).

    Article  MathSciNet  Google Scholar 

  16. I. V. Abalakin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, and V. A. Anikin, “Numerical simulation of aerodynamic and acoustic characteristics of a ducted rotor,” Math. Models Comput. Simul. 8, 309–324 (2016).

    Article  MathSciNet  Google Scholar 

  17. I. V. Abalakin, P. A. Bakhvalov, O. A. Doronina, N. S. Zhdanova, and T. K. Kozubskaia, “Simulating aerodynanics of a moving body specified by immersed boundaries on dynamically adaptive unstructured meshes,” Mat. Models Comput. Simul. 11, 35–45 (2019).

    Article  MathSciNet  Google Scholar 

  18. P. A. Bakhvalov and V. A. Vershkov, “Edge-based schemes on moving hybrid meshes in the NOISEtte code,” KIAM Preprint No. 127 (Keldysh Inst. Appl. Math., Moscow, 2018).

    Google Scholar 

  19. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, and T. K. Kozubskaia, “Parallel research code NOISEtte for large-scale CFD and CAA simulations,” Vychisl. Metody Programm. 13, 110–125 (2012).

    Google Scholar 

  20. V. A. Vershkov, “Algorithm of mesh deformation for accounting cyclic blase control and blades flapping in the problem of helicopter main rotor modeling,” Nauch. Vestn. MGTU GA 22 (2), 62–74 (2019).

    Article  Google Scholar 

  21. P. A. Bakhvalov and T. K. Kozubskaya, “Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes,” Comput. Math. Math. Phys. 57, 680–697 (2017).

    Article  MathSciNet  Google Scholar 

  22. I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Meth. Fluids 81, 331–356 (2002).

    Article  MathSciNet  Google Scholar 

  23. L. Qu, C. Norberg, L. Davidson, S. H. Peng, and F. Wang, “Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200,” J. Fluid Struct. 39, 347–370 (2013).

    Article  Google Scholar 

  24. I. V. Abalakin, A. P. Duben, N. S. Zhdanova, and T. K. Kozubskaia, “Simulating an unsteady turbulent flow around a cylinder by the immersed boundary method,” Math. Models Comput. Simul. 11, 74–85 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Abalakin or N. S. Zhdanova.

Ethics declarations

This work was supported by Russian Science Foundation, project 16-11-10350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalakin, I.V., Vershkov, V.A., Zhdanova, N.S. et al. Numerical Simulation of Acoustic Fields Induced by a Flow Past an Oscillating Solid. Math Models Comput Simul 12, 422–432 (2020). https://doi.org/10.1134/S2070048220030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220030023

Keywords:

Navigation