Skip to main content
Log in

Comparison of Two Higher Accuracy Unstructured Scale-Resolving Approaches Applied to Dual-Stream Nozzle Jet Simulation

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Dual-stream nozzle jet computations conducted using different numerical algorithms developed at Zhukovsky Central Aerohydrodynamic Institute (TsAGI) and Keldysh Institute of Applied Mathematics, Russian Academy of Sciences (KIAM RAS) are presented. The scale-resolving approaches of the DES family based on higher accuracy numerical methods are applied. The flow considered is studied experimentally at Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences (ITAM SB RAS). The jet is axisymmetric up to the effect of the supporting pylons, cold, subsonic at the inner nozzle exit, and supersonic at the outer nozzle exit. The computational data are compared with the experiment and with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. Vlasenko, S. Bosniakov, S. Mikhailov, A. Morozov, and A. Troshin, “Computational approach for investigation of thrust and acoustic performances of present-day nozzles,” Prog. Aerospace. Sci. 46, 141–197 (2010).

    Article  Google Scholar 

  2. A. Savelyev, N. Zlenko, E. Matyash, S. Mikhaylov, and A. Shenkin, “Optimal design and installation of ultra high bypass ratio turbofan nacelle,” AIP Conf. Proc. 1770, 030123 (2016).

    Article  Google Scholar 

  3. J. F. Groeneweg and E. J. Rice, “Aircraft turbofan noise,” J. Turbomach. 109, 130–141 (1987).

    Article  Google Scholar 

  4. N. A. Zlenko, S. V. Mikhailov, A. A. Savelev, and A. V. Shenkin, “Technique of the optimal aerodynamic design of a turbojet engine nacelle with a high degree of bypass,” Uch. Zap. TsAGI 46 (6), 20–38 (2015).

    Google Scholar 

  5. N. W. M. Ko and A. S. H. Kwan, “The initial region of subsonic coaxial jets,” J. Fluid Mech. 73, 305–332 (1976).

    Article  Google Scholar 

  6. E. Murakami and D. Papamoschou, “Mean flow development in dual-stream compressible jets,” AIAA J. 40, 1131–1138 (2002).

    Article  Google Scholar 

  7. R. I. Sujith, R. Ramesh, S. Pradeep, S. Sriram, and T. M. Muruganandam, “Mixing of high speed coaxial jets,” Exp. Fluids 30, 339–345 (2001).

    Article  Google Scholar 

  8. V. I. Zapryagaev, N. P. Kiselev, and A. A. Pivovarov, “Gasdynamic structure of an axisymmetric supersonic underexpanded jet,” Fluid Dyn., 50, 87–97 (2015). https://doi.org/10.1134/S001546281501010X

    Article  MATH  Google Scholar 

  9. A. P. Markesteijn and S. A. Karabasov, “GPU CABARET solutions for the CoJen jet noise experiment,” in Proceedings of the2018AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum, AIAA Paper 2018-3921. https://doi.org/10.2514/6.2018-3921

  10. V. A. Semiletov, P. G. Yakovlev, S. A. Karabasov, G. A. Faranosov, and V. F. Kopiev, “Jet and jet-wing noise modelling based on the Cabaret Miles flow solver and the Ffowcs Williams-Hawkings method,” Int. J. Aeroacoust. 15, 631–645 (2016). https://doi.org/10.1177/1475472X16659387

    Article  Google Scholar 

  11. L. A. Benderskii and D. A. Liubimov, “Application of the RANS / ILES high-resolution method for the study of complex turbulent jets,” Uch. Zap. TsAGI 45 (2), 22–36 (2014).

    Google Scholar 

  12. J. Verrière, F. Gand, and S. Deck, “Zonal detached-eddy simulations of a dual-stream jet,” AIAA J. 54, 3176–3190 (2016). https://doi.org/10.2514/1.J054896

    Article  Google Scholar 

  13. M. L. Shur, P. R. Spalart, and M. K. Strelets, “Noise prediction for underexpanded jets in static and flight conditions,” AIAA J. 49, 2000–2017 (2011).

    Article  Google Scholar 

  14. P. R. Spalart, “Detached-eddy simulation,” Ann. Rev. Fluid. Mech. 41, 181–202 (2009).

    Article  Google Scholar 

  15. F. Bassi and S. Rebay, “A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,” J. Comput. Phys. 131, 267–279 (1997).

    Article  MathSciNet  Google Scholar 

  16. R. Hartmann, “Wall-resolved and wall-modeled ILES based on high-order DG,” in Proceedings of the ECCOMAS (ECCM-ECFD)2018Conference, Glasgow, UK.

  17. J.-B. Chapelier, M. de la Llave Plata, and E. Lamballais, “Development of a multiscale LES model in the context of a modal DG method,” Comput. Methods Appl. Mech. Eng. 307, 275–299 (2016).

    Article  Google Scholar 

  18. P. Bakhvalov, I. Abalakin, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids 81, 331–356 (2016).

    Article  MathSciNet  Google Scholar 

  19. P. Bakhvalov and T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes,” Comput. Fluids 157, 312–324 (2017).

    Article  MathSciNet  Google Scholar 

  20. S. M. Bosnyakov, S. V. Mikhaylov, V. Yu. Podaruev, and A. I. Troshin, “Unsteady discontinuous galerkin method of a high order of accuracy for modeling turbulent flows,” Math. Models Comput. Simul. 11, 22–34 (2019).

    Article  MathSciNet  Google Scholar 

  21. I. S. Bosnyakov, S. V. Mikhaylov, V. Yu, “Podaruev, A. I. Troshin, V. V. Vlasenko, and A. V. Wolkov, "Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores,” in Proceedings of the 23rd AIAA Computational Fluid Dynamics Conference, Denver, CO, June 5–9,2017.

  22. P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. Kh. Strelets, and A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities,” Theor. Comput. Fluid Dyn. 20, 181–195 (2006).

    Article  Google Scholar 

  23. M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows,” Flow Turbulence Combust. 95, 709–737 (2015).

    Article  Google Scholar 

  24. B. van Leer, W. T. Lee, P. L. Roe, K. G. Powell, and C. H. Tai, “Design of optimally smoothing multistage schemes for the Euler equations,” Commun. Appl. Numer. Meth. 8, 761–769 (1992).

    Article  Google Scholar 

  25. F. Bassi, S. Rebay, G. Mariotti, and S. Pedinotti, and M. Savini, “A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows,” in Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Belgium, Antwerpen,1997, pp. 99–109.

  26. P.-O. Persson and J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, USA, Reno, January 9–12,2006.

  27. F. R. Menter, “Improved two-equation k-ω turbulence models for aerodynamic flows,” NASA TM-103975 (1992).

  28. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, and T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale computations of aerodynamics and aero-acoustics problems,” Vychisl. Metody Programm. 13 (3), 110–125 (2012).

    Google Scholar 

  29. M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. V. Garbaruk, “Analysis of jet-noise-reduction concepts by large-eddy simulation,” Int. J. Aeroacoust. 6, 243–285 (2007).

    Article  Google Scholar 

  30. C. Mockett, M. Fuchs, A. Garbaruk, F. Thiele, M. Shur, M. Strelets, A. Travin, and P. Spalart, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES,” Notes Numer. Fluid Mech. 130, 187–201 (2015).

    Google Scholar 

  31. A. P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes,” Math. Models Comput. Simul. 6, 162–171 (2014). https://doi.org/10.1134/S2070048214020045

    Article  MathSciNet  Google Scholar 

  32. A. Duben and T. Kozubskaya, “Jet noise simulation using quasi-1D schemes on unstructured meshes,” AIAA-Paper 2017-3856 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Duben or A. I. Troshin.

Ethics declarations

This work was supported by the Russian Foundation for Basic Research, project nos. 18-08-01436 А and 18-31-00368 mol_а. The results of the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences were obtained using the computing resources of the Kurchatov Institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosniakov, S.M., Wolkov, A.V., Duben, A.P. et al. Comparison of Two Higher Accuracy Unstructured Scale-Resolving Approaches Applied to Dual-Stream Nozzle Jet Simulation. Math Models Comput Simul 12, 368–377 (2020). https://doi.org/10.1134/S2070048220030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220030102

Keywords:

Navigation