Skip to main content

Advertisement

Log in

Viral silencing suppressors and cellular proteins partner with plant RRP6-like exoribonucleases

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

RNA silencing and RNA decay are functionally interlaced, regulate gene expression and play a pivotal role in antiviral responses. As a counter-defensive strategy, many plant and mammalian viruses encode suppressors which interfere with both mechanisms. However, the protein interactions that connect these pathways remain elusive. Previous work reported that RNA silencing suppressors from different potyviruses, together with translation initiation factors EIF(iso)4E, interacted with the C-terminal region of the tobacco exoribonuclease RRP6-like 2, a component of the RNA decay exosome complex. Here, we investigate whether other viral silencing suppressors and cellular proteins might also bind RRP6-like exoribonucleases. A candidate search approach based on yeast two-hybrid protein interaction assays showed that three other unrelated viral suppressors, two from plant viruses and one from a mammalian virus, bound the C-terminus of the tobacco RRP6-like 2, the full-length of the Arabidopsis RRP6L1 protein and its C-terminal region. In addition, RRP6-like proteins were found to interact with members of the cellular double-stranded RNA-binding protein (DRB) family involved in RNA silencing. The C-terminal regions of RRP6L proteins are engaged in homotypic and heterotypic interactions and were predicted to be disordered. Collectively, these results suggest a protein interaction network that connects components of RNA decay and RNA silencing that is targeted by viral silencing suppressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    CAS  PubMed  Google Scholar 

  2. Lee CH, Carroll BJ (2018) Evolution and diversification of small RNA pathways in flowering plants. Plant Cell Physiol 59:2169–2187

    CAS  PubMed  Google Scholar 

  3. Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296:1270–1273

    CAS  PubMed  Google Scholar 

  4. Zhang C, Wu Z, Li Y, Wu J (2015) Biogenesis, function, and applications of virus-derived small RNAs in plants. Front Microbiol 6:1237

    PubMed  PubMed Central  Google Scholar 

  5. Zhang X, Zhang X, Wu K, Liu Z, Li D, Qu F (2016) Incomplete DRB4-dependence of the DCL4 mediated antiviral defence. Sci Rep 6:39244

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308

    PubMed  Google Scholar 

  7. Boutet S, Vazquez F, Liu J, Béclin C, Fagard M, Gratias A, Morel JB, Crété P, Chen X, Vaucheret H (2003) Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 213:843–848

    Google Scholar 

  8. Carbonell A, Carrington JC (2015) Antiviral roles of plant ARGONAUTES. Curr Opin Plant Biol 27:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Rémoué K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    CAS  PubMed  Google Scholar 

  10. Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–145

    CAS  PubMed  Google Scholar 

  11. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103

    PubMed  Google Scholar 

  12. Maillard PV, van der Veen AG, Poirier EZ, Reis E Sousa C (2019) Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J 38:e100941

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiba Y, Green PJ (2009) mRNA degradation in plants. J Plant Biol 52:114–124

    CAS  Google Scholar 

  14. Molleston JM, Cherry S (2017) Attacked from all sides: RNA decay in antiviral defence. Viruses 9:2

    PubMed Central  Google Scholar 

  15. Liu L, Chen X (2016) RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol Plant 9:826–836

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreno AB, Martínez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A, Mallory AC (2013) Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate posttranscriptional gene silencing in plants. Nucleic Acids Res 41:4699–4708

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li F, Wang A (2018) RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLoS Pathog 14:e1007228

    PubMed  PubMed Central  Google Scholar 

  18. Freire MA (2014) Potyviral VPg and HC-Pro proteins and the cellular translation initiation factor eIF(iso)4E interact with exoribonuclease Rrp6 and a small α-Heat shock protein. Plant Mol Biol Rep 32:596–604

    CAS  Google Scholar 

  19. Lange H, Holec S, Cognat V, Pieuchot L, Le Ret M, Canaday J, Gagliardi D (2008) Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 28:3038–3044

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Valli AA, Gallo A, Rodamilans B, López-Moya JJ, García JA (2018) The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Mol Plant Pathol 19:744–763

    PubMed  Google Scholar 

  21. Revers F, García JA (2015) Molecular biology of potyviruses. Adv Virus Res 92:101–199

    CAS  PubMed  Google Scholar 

  22. Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084

    CAS  PubMed  Google Scholar 

  23. Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    CAS  PubMed  Google Scholar 

  25. Jiang J, Laliberté JF (2011) The genome-linked protein VPg of plant viruses-a protein with many partners. Curr Opin Virol 1:347–354

    CAS  PubMed  Google Scholar 

  26. Rajamäki ML, Valkonen JP (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell 21:2485–2502

    PubMed  PubMed Central  Google Scholar 

  27. Sanfaçon H (2015) Plant translation factors and virus resistance. Viruses 7:3392–3419

    PubMed  PubMed Central  Google Scholar 

  28. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmid M, Jensen TH (2008) The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 33:501–510

    CAS  PubMed  Google Scholar 

  30. Hsu YF, Hsiao YC, Wang CS, Zhan H, Zhang X, Wang CS (2014) AtRRP6L1, a homolog of conserved yeast exosomal Rrp6p, plays an important role in transcriptional gene silencing in Arabidopsis. Mol Plant 7:1490–1493

    CAS  PubMed  Google Scholar 

  31. Basha E, O'Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    CAS  PubMed  Google Scholar 

  32. Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283

    CAS  PubMed  Google Scholar 

  33. Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214

    CAS  PubMed  Google Scholar 

  34. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    CAS  PubMed  Google Scholar 

  35. Freire MA, Tourneur C, Granier F et al (2000) Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Mol Biol 44:129–140

    CAS  PubMed  Google Scholar 

  36. Breeden L, Nasmyth K (1985) Regulation of the yeast HO gene. Cold Spring Sym Quant Biol 50:643–650

    CAS  Google Scholar 

  37. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    CAS  PubMed  Google Scholar 

  38. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    CAS  PubMed  Google Scholar 

  39. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28:i75–83

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Uhrig JF, Canto T, Marshall D, MacFarlane SA (2004) Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol 135:2411–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Leshchiner AD, Minina EA, Rakitina DV, Vishnichenko VK, Solovyev AG, Morozov SY, Kalinina NO (2008) Oligomerization of the potato virus X 25-kD movement protein. Biochemistry (Mosc) 73:50–55

    CAS  Google Scholar 

  42. Nemeroff ME, Qian XY, Krug RM (1995) The influenza virus NS1 protein forms multimers in vitro and in vivo. Virology 212:422–428

    CAS  PubMed  Google Scholar 

  43. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    CAS  PubMed  Google Scholar 

  44. Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y (2014) Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res 42:12224–12236

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57:173–188

    CAS  PubMed  Google Scholar 

  46. Tschopp M-A, Iki T, Brosnan CA, Jullien PE, Pumplin N (2017) A complex of Arabidopsis DRB proteins can impair dsRNA processing. RNA 23:782–797

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96:14147–141452

    CAS  PubMed  Google Scholar 

  48. Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157–167

    CAS  PubMed  Google Scholar 

  49. Delgadillo MO, Sáenz P, Salvador B, García JA, Simón-Mateo C (2004) Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J Gen Virol 85:993–999

    CAS  PubMed  Google Scholar 

  50. Vargason JM, Szittya G, Burgyán J, Hall TM (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799–811

    CAS  PubMed  Google Scholar 

  51. Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003) Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem 278:23753–23761

    CAS  PubMed  Google Scholar 

  52. Oruetxebarria I, Guo D, Merits A, Mäkinen K, Saarma M, Valkonen JP (2001) Identification of the genome-linked protein in virions of Potato virus A, with comparison to other members in genus Potyvirus. Virus Res 73:103–112

    CAS  PubMed  Google Scholar 

  53. Cheng A, Wong SM, Yuan YA (2009) Structural basis for dsRNA recognition by NS1 protein of influenza A virus. Cell Res 19:187–195

    CAS  PubMed  Google Scholar 

  54. Yang SW, Chen HY, Yang J, Machida S, Chua NH, Yuan YA (2010) Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18:594–605

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Canto T, Uhrig JF, Swanson M, Wright KM, MacFarlane SA (2006) Translocation of Tomato bushy stunt virus P19 protein into the nucleus by ALY proteins compromises its silencing suppressor activity. J Virol 80:9064–9072

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Melén K, Kinnunen L, Fagerlund R, Ikonen N, Twu KY, Krug RM, Julkunen I (2007) Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J Virol 81:5995–6006

    PubMed  PubMed Central  Google Scholar 

  57. Samuels TD, Ju HJ, Ye CM, Motes CM, Blancaflor EB, Verchot-Lubicz J (2007) Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 367:375–389

    CAS  PubMed  Google Scholar 

  58. Beauchemin C, Boutet N, Laliberté JF (2007) Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81:775–782

    CAS  PubMed  Google Scholar 

  59. Wasmuth EV, Lima CD (2017) The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 45:846–860

    CAS  PubMed  Google Scholar 

  60. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100

    PubMed  PubMed Central  Google Scholar 

  61. Ala-Poikela M, Rajamäki ML, Valkonen JPT (2019) A Novel interaction network used by potyviruses in virus-host interactions at the protein level. Viruses 11:1158

    CAS  PubMed Central  Google Scholar 

  62. Mäkinen K, Lõhmus A, Pollari M (2017) Plant RNA regulatory network and RNA granules in virus infection. Front Plant Sci 11:2093

    Google Scholar 

  63. Thomas MG, Loschi M, Desbats MA, Boccaccio GL (2011) RNA granules: the good, the bad and the ugly. Cell Signal 23:324–334

    CAS  PubMed  Google Scholar 

  64. Zhang H, Tang K, Qian W, Duan CG, Wang B, Zhang H, Wang P, Zhu X, Lang Z, Yang Y, Zhu JK (2014) An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol Cell 54:418–430

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wendte JM, Haag JR, Singh J, McKinlay A, Pontes OM, Pikaard CS (2017) Functional dissection of the Pol V largest subunit CTD in RNA-directed DNA methylation. Cell Rep 19:2796–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li S, Liu K, Sun Q (2019) Comprehensive classification of the RNase H-like domain-containing proteins in plants. bioRxiv 572842

  67. Reed JC, Kasschau KD, Prokhnevsky AI, Gopinath K, Pogue GP, Carrington JC, Dolja VV (2003) Suppressor of RNA silencing encoded by Beet yellows virus. Virology 306:203–209

    CAS  PubMed  Google Scholar 

  68. Li M, Zhang J, Feng M, Wang X, Luo C, Wang Q, Cheng Y (2018) Characterization of silencing suppressor p24 of Grapevine leafroll-associated virus 2. Mol Plant Pathol 19:355–368

    CAS  PubMed  Google Scholar 

  69. Mérai Z, Kerényi Z, Kertész S, Magna M, Lakatos L, Silhavy D (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80:5747–5756

    PubMed  PubMed Central  Google Scholar 

  70. Garcia-Ruiz H, Peralta SMG, Harte-Maxwell PA (2018) Tomato Spotted Wilt Virus NSs protein supports infection and systemic movement of a Potyvirus and is a symptom determinant. Viruses 10:129

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Taline Elmayan, Dominique Gagliardi, Yuke He, Stuart MacFarlane, Xuemei Chen, Yuqin Cheng, Marie-Aude Tschopp, Valerian Dolja, Jianping Chen, Hernán Garcia-Ruiz and Amelia Nieto for providing materials; Shirley Burgess for correction of the text; Universidad Nacional de Córdoba and CONICET for facilities and support.

Funding

The study was funded by CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Freire.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Additional information

Edited by Karel Petrzik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99 kb)

Supplementary file2 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, M.Á. Viral silencing suppressors and cellular proteins partner with plant RRP6-like exoribonucleases. Virus Genes 56, 621–631 (2020). https://doi.org/10.1007/s11262-020-01775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-020-01775-z

Keywords

Navigation