Skip to main content

Advertisement

Log in

Molecular docking, linear and nonlinear QSAR studies on factor Xa inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Factor Xa (FXa) enzyme has an important role in the blood coagulation system. Disruption in the enzyme function results in the production of blood clots. Therefore, inhibition of the factor Xa with anticoagulant drugs is an important target in thromboembolic therapy. Experimental design of new drugs is a time-consuming and expensive process. Application of molecular modeling is an essential step for designing new and high yield drugs to achieve better results. In this study, 36 aroylguanidine derivatives that inhibit destructive activities by binding to the FXa enzyme were selected. Quantitative Structure-Activity Relationships (QSAR) model was developed for predicting the IC50 parameter for factor Xa inhibitors. QSAR have been constructed by combining Genetic Algorithms with Multiple Linear Regressions (GA-MLR) and Support Vector Machine (SVM). The correlation coefficient (R2) and root mean square error (RMSE) for GA-MLR are 0.895, 0.142 and for SVM are 0.994, 0.032, respectively. The obtained results indicated that the SVM method is superior over the GA-MLR method. Also, molecular docking was used to examine the results more accurately, in which energy interactions were investigated. Molecular docking indicated the binding relationship between the receptor and the ligand. The results showed that reducing the parameters such as electronegativity, and the size of the atoms, as well as increasing the number of loops and groups attached to the structures, is effective in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eisenberg PR, Siegel JE, Abendschein DR, Miletich JP (1993) Importance of factor Xa in determining the procoagulant activity of whole-blood clots. J Clin Investig 91:1877–1883

    Article  CAS  Google Scholar 

  2. Shi Y, Sitkoff D, Zhang J, Han W, Hu Z, Stein PD, Wang Y, Kennedy LJ, Oconner SP, Ahmad S, Liu EC, Seiler SM, Lam PY, Robl JA, Macor JE, Atwal KS, Zahler R (2007) Amino (methyl) pyrrolidines as novel scaffolds for factor Xa inhibitors. Bioorg Med Chem 17:5952–5958

    Article  CAS  Google Scholar 

  3. Xing J, Yang L, Li H, Li Q, Zhao L, Wang X, Zhang Y, Zhou M, Zhou H, Zhang H (2015) Identification of anthranilamide derivatives as potential factor Xa inhibitors: drug design, synthesis and biological evaluation. Eur J Med Chem 95:388–399

    Article  CAS  Google Scholar 

  4. Iwatsuki Y, Sato T, Moritani Y, Shigenaga T, Suzuki M, Kawasaki T, Funatsu T, Kaku S (2011) Biochemical and pharmacological profile of darexaban, an oral direct factor Xa inhibitor. Eur J Pharmacol 673:49–55

    Article  CAS  Google Scholar 

  5. Verma RP, Hansch C (2010) QSAR modeling of taxane analogues against colon cancer. Eur J Med Chem 45:1470–1477

    Article  CAS  Google Scholar 

  6. Choudhari PB, Bhatia MS, Kumbhar SS (2012) 3D QSAR and pharmacophore modeling of selected factor Xa inhibitors. Med Chem Res 21:1427–1432

    Article  CAS  Google Scholar 

  7. Jain SV, Ghate M, Bhadoriya KS, Bari SB, Chaudhari A, Borse JS (2012) 2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacetanilides analogues as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Org Med Chem Lett 2:2–22

    Article  Google Scholar 

  8. Jagiello K, Makurat S, Perec S, Rak J, Puzyn T (2018) Molecular features of thymidine analogues governing the activity of human thymidine kinase. Struct Chem 29:1367–1374

    Article  CAS  Google Scholar 

  9. Jagiello K, Sosnowska A, Kar S, Demkowicz S, Dasko M, Leszczynski J, Rachon J, Puzyn T (2017) Geometry optimization of steroid sulfatase inhibitors—the influence on the free binding energy with STS. Struct Chem 28:1017–1032

    Article  CAS  Google Scholar 

  10. Fevig JM, Cacciola J, Buriak J, Rossi KA, Knabb RM, Luettgen JM, Wong PC, Bai SA, Wexler RR, Lam PY (2006) Preparation of 1-(4-methoxyphenyl)-1H-pyrazolo [4, 3-d] pyrimidin-7(6H)-ones as potent, selective and bioavailable inhibitors of coagulation factor Xa. Bioorg Med Chem Lett 16:3755–3760

    Article  CAS  Google Scholar 

  11. Bhongade BA, Gouripurb VV, Gadada AK (2005) 3D-QSAR CoMFA studies on trypsin-like serine protease inhibitors: a comparative electivity analysis. Bioorg Med Chem 13:2773–2782

    Article  CAS  Google Scholar 

  12. Nazare M, Will DW, Matter H (2005) Probing the subpockets of factor Xa reveals two binding modes for inhibitors based on a 2-carboxyindole scaffold: a study combining structure-activity relationship and X-ray crystallography. J Med Chem 48:4511–4525

    Article  CAS  Google Scholar 

  13. Dguigui K, Elhallaoui M (2013) 3D-QSAR modeling of substituted thiophene-anthranilamides as potent inhibitors of human factor Xa using quantum chemical descriptors. Int J Sci Res 4:1237–1247

  14. Al-Horani RA, Mehta AY, Desai UR (2012) Potent direct inhibitors of factor Xa based on the tetrahydroisoquinoline scaffold. Eur J Med Chem 54:771e783

    Article  Google Scholar 

  15. Mendel D, Marquart AL, Joseph S (2007) Anthranilamide inhibitors of factor Xa. Bioorg Med Chem Lett 17:4832–4836

    Article  CAS  Google Scholar 

  16. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  17. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag, New York

    Book  Google Scholar 

  18. Rezaei B, Riahi S, Ebrahimpoor Gorgi A (2020) Molecular investigation of amine performance in the carbon capture process: least squares support vector machine approach. Korean J Chem Eng 37:72–79

    Article  CAS  Google Scholar 

  19. Khaheshi Hasnkiadeh SH, Riahi S, Mohammadi-khanaposhti M, Shokrollahzadeh H (2019) Prediction of amines capacity for carbon dioxide absorption based on structural characteristics. Ind Eng Chem Res 58:8763–8771

    Google Scholar 

  20. Mehraein I, Riahi S (2017) The QSPR models to predict the solubility of CO2 in ionic liquids based on least-squares support vector machines and genetic algorithm-multi linear regression. J Mol Liq 225:521–530

    Article  CAS  Google Scholar 

  21. Claycamp HG, Sussman NB, Macina O, Rosenkranz HS (1999) Artificial neural networks as statistical tools in SAR/QSAR modeling. AAAI Technical Report SS-99-01, 1-4

  22. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  23. Kovalishyn V, Tanchuk V, Charochkina L, Semenuta I, Prokopenko V (2012) Predictive QSAR modeling of phosphodiesterase 4 inhibitors. J Mol Graph Model 32:32–38

    Article  CAS  Google Scholar 

  24. Tian Y, Shi Y, Liu X (2012) Recent advances on support vector machines research. Technol Econ Dev Econ 18:5–33

    Article  Google Scholar 

  25. Meng XY, Zhang HX, Mezei M, Cui M (2012) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  Google Scholar 

  26. Shi Y, Li C, Zhang J, Shi M, Huang C, Sitkoff D (2009) Aroylguanidine-based factor Xa inhibitors: the discovery of BMS-344577. Bioorg Med Chem 19:6882–6889

    Article  CAS  Google Scholar 

  27. Sepehri B, Rasouli Z, Ghavami R (2016) Molecular docking and QSAR analysis of naphthyridone derivatives as ATAD2 bromodomain inhibitors: application of CoMFA, LS-SVM, and RBF neural network. Med Chem Res 25:2895–2905

    Article  CAS  Google Scholar 

  28. Fatemi MH, Heidari A, Gharaghani S (2015) QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors. J Theor Biol 369:13–22

  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  30. Release H (2002) 7.5 for Windows, molecular modeling system, Hypercube. Inc. http://www.Hyper.Com

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  32. Todeschini R, Consonni V, Mauri A, Pavan M (2002) DRAGON-Software for the calculation of molecular descriptors version 2.1

  33. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley VCH, Weinheim

  34. Modarresi H, Modarress H, Dearden JS (2007) QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Chemosphere 66:2067–2076

    Article  CAS  Google Scholar 

  35. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman, Boston

    Google Scholar 

  36. Yao XJ, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT (2004) Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks and multiple linear regression. J Chem Inf Model 44:1257–1266

    CAS  Google Scholar 

  37. Ghaslani D, Es’haghi Gorji Z, Ebrahimpour Gorji A, Riahi S (2017) Descriptive and predictive models for Henry’s law constant of CO2 liquids: a QSPR study. Chem Eng Res Des 120:15–25

  38. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  39. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  40. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MT, Gramatica P, Jaworska JS, Kahn S (2005) Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 33:155–173

    Article  CAS  Google Scholar 

  41. Saiz-Urra L, Gonzalez MP, Fall Y, Gomez G (2007) Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors. Eur J Med Chem 42:64–10

    Article  CAS  Google Scholar 

  42. Xinliang Y, Xianwei H (2017) A quantitative relationship between Tgs and chain segment structures of polystryrenes. Plimeros, 27: no. 1 Sao Carlos

  43. Fatemi M, Gharaghani S (2007) A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg Med Chem 15:7746–7754

    Article  CAS  Google Scholar 

  44. Klein CT, Kaiser D, Ecker G (2004) Topological distance based 3D descriptors for use in QSAR and diversity analysis. J Chem Inf Comput Sci 44:200–209

    Article  CAS  Google Scholar 

  45. Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 19:151–164

    Article  CAS  Google Scholar 

  46. Schuur JH, Selzer P, Gasteiger J (1996) The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344

    Article  CAS  Google Scholar 

  47. Katritzky AR, Pacureanu LM, Slavov S, Dobchev DA, Karelson M (2006) QSAR study of antiplatelet agents. Bioorg Med Chem 14:7490–7500

    Article  CAS  Google Scholar 

  48. Xu C, Ren Y (2015) Molecular modeling studies of [6,6,5] tricyclic fused oxazolidinones as FXa inhibitors using 3D- QSAR, topomer CoMFA, molecular docking and molecular dynamics simulations. Bioorg Med Chem Lett 25:4522–4528

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Institute of Petroleum Engineering (IPE), University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Riahi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramandi, M., Riahi, S., Rahimi, H. et al. Molecular docking, linear and nonlinear QSAR studies on factor Xa inhibitors. Struct Chem 31, 2023–2040 (2020). https://doi.org/10.1007/s11224-020-01535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01535-7

Keywords

Navigation