Skip to main content
Log in

One-pot synthesis of dibenzaldehyde-terminated poly(ethylene glycol) for preparation of dynamic chitosan-based amphiphilic hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In order to synthesize dynamic amphiphilic hydrogels, in the first step, dibenzaldehyde-terminated telechelic poly(ethylene glycol) (PEG-DA) was synthesized via simple one-pot method by using hexamethylene diisocyanate and para-hydroxybenzaldehyde. In the second step, 4-arm star-shaped polycaprolactone tetraaldehyde (4sPCL-TA) was synthesized in three steps. All of the synthesized prepolymers and functionalization reactions were characterized by 1H-NMR and FT-IR spectroscopy. Finally, a series of new dynamic amphiphilic hydrogels were prepared through dynamic covalent Schiff-base linkages by simply mixing nontoxic chitosan, PEG-DA and 4sPCL-TA solutions. The chemical structure, morphology, thermal properties, gel degradation, mechanical performance, swelling behavior and self-healing capability of hydrogels were investigated. The obtained results showed that the hydrogels present suitable self-healing performance without any external stimulus. These properties of hydrogels can be attributed to covalent Schiff base linkages between the aldehyde and amine groups of prepolymers. Moreover, the hydrogels displayed pH-dependent degradation behavior. Swelling degree and degradation rate of hydrogels decreased with introducing of 4sPCL-TA in hydrogel networks. In addition, the thermal and mechanical properties of hydrogels were improved with incorporation of 4sPCL-TA into the network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kazunobu A, Nobuto K, Hiroyuki F, Takayuki K, Mikio I, Masaru U, Fuminori K, Yoshihito O, Jian PG, Kazunori Y (2010) Artificial cartilage made from a novel double-network hydrogel: in vivo effects on the normal cartilage and ex vivo evaluation of the friction property. J Biomed Mater Res Part A 93:1160–1168

    Google Scholar 

  2. Benjamin GC, Rachel CS, Deborah B, Brain DS, Mark WG (2016) A tissue-penetrating double network restores the mechanical properties of degenerated articular cartilage. Angew Chem 128:4298–4302. https://doi.org/10.1002/ange.201511767

    Article  Google Scholar 

  3. Treenate P, Monvisade P (2017) In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int J Biol Macromol 99:71–78. https://doi.org/10.1016/j.ijbiomac.2017.02.061

    Article  CAS  PubMed  Google Scholar 

  4. Yun LW, Han W, Ying KQ, Xian JL (2016) PLA-based thermogel for the sustained delivery of chemotherapeutics in a mouse model of hepatocellular carcinoma. RSC Adv 6:44506–44513. https://doi.org/10.1039/C6RA08022G

    Article  CAS  Google Scholar 

  5. Seo BB, Koh JT, Song SC (2017) Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials 122:91–104. https://doi.org/10.1016/j.biomaterials.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  6. Brown TE, Anseth KS (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46:6532–6552. https://doi.org/10.1039/c7cs00445a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jose Guillermo TR, Tim F, Laura DL, Thomas T, Khosrow R, Felix G, Sara Z, Wiltrud L, Shinsuke I, Matthias W, John GH, Andreas W (2015) Bioactive Gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv Mater 27:2989–2995. https://doi.org/10.1002/adma.201405873

    Article  CAS  Google Scholar 

  8. Sunjmin H, Dalton S, Hon FC, Shaoting L, Gabriel PL, Farshid G, Kam WL, Xuanhe Z (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040. https://doi.org/10.1002/adma.201501099

    Article  CAS  Google Scholar 

  9. Dongyuan Z, Borui L, Yi S, Lijia P, Yaqun W, Wenbo L, Rong Z, Guihua Y (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546. https://doi.org/10.1021/nn400482d

    Article  CAS  Google Scholar 

  10. Sun JY, Keplinger C, Whitesides GM, Suo Z (2014) Ionic skin. Adv Mater 26:7608–7614. https://doi.org/10.1002/adma.201403441

    Article  CAS  PubMed  Google Scholar 

  11. Naama MI, Giorgi S, Tal Z, Ester S (2010) Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater 20:2269–2277. https://doi.org/10.1002/adfm.201000406

    Article  CAS  Google Scholar 

  12. Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–3283. https://doi.org/10.1016/s0142-9612(01)00165-x

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Conway A, Chauhan A (2008) Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials 29:2259–2269. https://doi.org/10.1016/j.biomaterials.2008.01.030

    Article  CAS  PubMed  Google Scholar 

  14. Caiping L, Ivan G (2010) Synthesis and physical properties of reactive amphiphilic hydrogels based on poly(p-chloromethylstyrene) and poly (ethylene glycol): effects of composition and molecular architecture. Macromolecules 43:3256–3267. https://doi.org/10.1021/ma9026564

    Article  CAS  Google Scholar 

  15. Ivan G, Chao Z (2003) Novel functionally grafted pseudo-semi-interpenetrating networks constructed by reactive linear-dendritic copolymers. J Am Chem Soc 125:11228–11234. https://doi.org/10.1021/ja0345625

    Article  CAS  Google Scholar 

  16. Sun Y, Collett J, Fullwood NJ, Mac NS, Rimmer S (2007) Culture of dermal fibroblasts and protein adsorption on block conetworks of poly (butyl methacrylate-block-(2,3 propandiol-1-methacrylate-stat-ethandiol dimethacrylate)). Biomaterials 28:661–670. https://doi.org/10.1016/j.biomaterials.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  17. Rimmer S, German MJ, Maughan J, Sun Y, Fullwood N, Ebdon J, MacNeil S (2005) Synthesis and properties of amphiphilic networks 3: preparation and characterization of block conetworks of poly (butyl methacrylate-block-(2,3 propandiol-1-methacrylate-stat-ethandiol dimethacrylate)). Biomaterials 26:2219–2230. https://doi.org/10.1016/j.biomaterials.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B, Zhang P, Zhang H, Yan C, Zheng Z, Wu B, Yu Y (2017) A transparent, highly stretchable, autonomous self-healing poly (dimethyl siloxane) elastomer. Macromol Rapid Commun. https://doi.org/10.1002/marc.201700110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhuo Z, Xiaolin W, Yitong W, Jingcheng H (2018) Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromol 19:980–988. https://doi.org/10.1021/acs.biomac.7b01764

    Article  CAS  Google Scholar 

  20. Judit C, Han G, Bert K (2011) Self-healing materials based on disulfide links. Macromolecules 44:2536–2541. https://doi.org/10.1021/ma2001492

    Article  CAS  Google Scholar 

  21. Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining diels-alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031. https://doi.org/10.1021/acsami.5b06896

    Article  CAS  PubMed  Google Scholar 

  22. Meng S, Chu G, Bingqiang L, Goulin W (2017) A pH, glucose, and dopamine triple-responsive, self-healable adhesive hydrogel formed by phenylborate–catechol complexation. Polym Chem 8:2997–3005. https://doi.org/10.1039/C7PY00519A

    Article  Google Scholar 

  23. Collins J, Nadgorny M, Xiao Z, Connal LA (2017) Doubly dynamic self-healing materials based on oxime click chemistry and boronic acids. Macromol Rapid Commun. https://doi.org/10.1002/marc.201600760

    Article  PubMed  Google Scholar 

  24. Guo R, Su Q, Zhang J, Dong A, Lin C, Zhang J (2017) Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromol 18:1356–1364. https://doi.org/10.1021/acs.biomac.7b00089

    Article  CAS  Google Scholar 

  25. Huang W, Wang Y, Chen Y, Zhao Y, Zhang Q, Zheng X, Chen L, Zhang L (2016) Strong and rapidly self-healing hydrogels: potential hemostatic materials. Adv Healthc Mater 5:2813–2822. https://doi.org/10.1002/adhm.201600720

    Article  CAS  PubMed  Google Scholar 

  26. Dong R, Zhao X, Guo B, Ma PX (2016) Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interfaces 8:17138–17150. https://doi.org/10.1021/acsami.6b04911

    Article  CAS  PubMed  Google Scholar 

  27. Qu J, Zhao X, Ma PX, Guo B (2017) pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater 58:168–180. https://doi.org/10.1016/j.actbio.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  28. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.044

    Article  CAS  PubMed  Google Scholar 

  29. Alaleh D, Sohrab R (2019) Synthesis and characterization of biodegradable multicomponent amphiphilic conetworks with tunable swelling through combination of ring-opening polymerization and “click” chemistry method as a controlled release formulation for 2,4-dichlorophenoxyacetic acid herbicide. Polym Advan Technol 30:368–380. https://doi.org/10.1002/pat.4474

    Article  CAS  Google Scholar 

  30. Yaser Z, Alaleh D, Sohrab R (2019) Increasing the hydrophilicity of star-shaped amphiphilic co-networks by using of PEG and dendritic s-PCL cross-linkers. Polym Advan Technol 30:2790–2801. https://doi.org/10.1002/pat.4711

    Article  CAS  Google Scholar 

  31. Mohammad S, Alaleh D, Sohrab R (2019) Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior. Polym Bull. https://doi.org/10.1007/s00289-019-02948-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Zanjan for their financial supports of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Rahmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, S., Barzegar, M. One-pot synthesis of dibenzaldehyde-terminated poly(ethylene glycol) for preparation of dynamic chitosan-based amphiphilic hydrogels. Polym. Bull. 78, 2887–2909 (2021). https://doi.org/10.1007/s00289-020-03244-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03244-x

Keywords

Navigation