Skip to main content
Log in

Broadband Microwave Absorber with a Double-Split Ring Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel broadband microwave absorber. Each unit in the metamaterial consists of a layer of dielectric material sandwiched between two layers of metal patches. Due to metal-dielectric-metal structures consist of symmetric resonators that have low co-polarization and cross-polarization as absorbers, the upper metal layer comprises a novel double-split ring resonator and a central octagonal ring pattern. Our simulation results show that the absorption of the proposed absorber is above 90% in the frequency range from 5.7 to 13.1 GHz. The absorption bandwidth over which the absorptivity exceeds 90% is approximately 7.4 GHz. The calculated relative bandwidth of 78.1% meets the standard for ultra-broadband absorption, and thus has prospects in applications. There are four main resonance frequencies at 6.07, 9.18, 12.75, and 13.11 GHz. And, the absorptivity is not significantly affected by the variation of the incident angle. We find that the resonance phenomenon becomes increasingly prominent as the incident wave frequency increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pang Y, Shen Y, Li Y, Wang J, Xu Z, Qu S (2018) Water-based metamaterial absorbers for optical transparency and broadband microwave absorption. J Appl Phys 123(15):155106. https://doi.org/10.1063/1.5023778

    Article  CAS  Google Scholar 

  2. Almoneef TS, Erkmen F, Ramahi OM (2017) Harvesting the energy of multi-polarized electromagnetic waves. Sci Rep 7(1):14656. https://doi.org/10.1038/s41598-017-15298-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yeng YX, Ghebrebrhan M, Bermel P, Chan WR, Joannopoulos JD, Soljacic M, Celanovic I (2012) Enabling high-temperature nanophotonics for energy applications. Proc Natl Acad Sci U S A 109(7):2280–2285. https://doi.org/10.1073/pnas.1120149109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qi L, Liu C (2019) Broadband multilayer graphene metamaterial absorbers. Opt Mater Express 9(3). https://doi.org/10.1364/ome.9.001298

  5. Xu J, Li R, Wang S, Han T (2018) Ultra-broadband linear polarization converter based on anisotropic metasurface. Opt Express 26(20):26235–26241. https://doi.org/10.1364/OE.26.026235

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Zhang B, Duan J, Xu Y (2018) Flexible ultrawideband microwave metamaterial absorber with multiple perfect absorption peaks based on the split square ring. Appl Opt 57(35):10257–10263. https://doi.org/10.1364/AO.57.010257

    Article  CAS  PubMed  Google Scholar 

  7. Yu P, Besteiro LV, Huang Y, Wu J, Fu L, Tan HH, Jagadish C, Wiederrecht GP, Govorov AO, Wang Z (2018) Broadband metamaterial absorbers. Adv Optic Mater 7(3):1800995. https://doi.org/10.1002/adom.201800995

    Article  CAS  Google Scholar 

  8. Roy Chowdhury D, Singh R, Taylor AJ, Chen H-T, Zhang W, Azad AK (2012) Coupling schemes in terahertz planar metamaterials. Int J Opt 2012:1–12. https://doi.org/10.1155/2012/148985

    Article  Google Scholar 

  9. Xu J, Li R, Wang S, Han T (2018) Ultra-broadband linear polarization converter based on anisotropic metasurface. Opt Express 26(20):26235–26241. https://doi.org/10.1364/OE.26.026235

    Article  CAS  PubMed  Google Scholar 

  10. Biabanifard S, Biabanifard M, Asgari S, Asadi S, Yagoub MCE (2018) Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt Commun 427:418–425. https://doi.org/10.1016/j.optcom.2018.07.008

    Article  CAS  Google Scholar 

  11. Zhang X, Gong Z (2015) Ultrathin metamaterial for polarization independent perfect absorption and band-pass filter. J Opt Soc Kor 19(6):665–672. https://doi.org/10.3807/josk.2015.19.6.665

    Article  Google Scholar 

  12. Zhang X, Wei Z, Fan Y, Wu C, Cheng K, Qi L, Zhang B, Zhang X (2018) Ultrathin dual-functional metasurface with transmission and absorption characteristics. Opt Mater Express 8(4). https://doi.org/10.1364/ome.8.000875

  13. Zhou Y, Shen Z, Huang X, Wu J, Li Y, Huang S, Yang H (2019) Ultra-wideband water-based metamaterial absorber with temperature insensitivity. Phys Lett A 383(23):2739–2743. https://doi.org/10.1016/j.physleta.2019.05.050

    Article  CAS  Google Scholar 

  14. Shi Y, Wu X, Qiu J (2018) The design and electromagnetic-wave-absorbing performance of a broadband four-layer absorbing composite. Ann Phys 530(9). https://doi.org/10.1002/andp.201800116

  15. Liu C, Qi L, Zhang X (2018) Broadband graphene-based metamaterial absorbers. AIP Adv 8(1). https://doi.org/10.1063/1.4998321

  16. Shen Y, Zhang J, Pang Y, Wang J, Ma H, Qu S (2018) Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Opt Express 26(12):15665–15674. https://doi.org/10.1364/OE.26.015665

    Article  CAS  PubMed  Google Scholar 

  17. Cheng K, Wei Z, Fan Y, Zhang X, Wu C, Li H (2019) Realizing broadband transparency via manipulating the hybrid coupling modes in metasurfaces for high-efficiency metalens. Adv Opt Mat 15:1900016. https://doi.org/10.1002/adom.201900016

    Article  CAS  Google Scholar 

  18. Zhang X, Wei Z, Fan Y, Qi L (2017) Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure. Curr Appl Phys 17(6):829–834. https://doi.org/10.1016/j.cap.2017.03.019

    Article  Google Scholar 

  19. Wang C-Y, Liang J-G, Cai T, Li H-P, Ji W-Y, Zhang Q, Zhang C-W (2019) High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms. IEEE Access 7:57259–57266. https://doi.org/10.1109/access.2019.2913278

    Article  Google Scholar 

  20. Pang Y, Shen Y, Li Y, Wang J, Xu Z, Qu S (2018) Water-based metamaterial absorbers for optical transparency and broadband microwave absorption. J Appl Phys 123(15):155106. https://doi.org/10.1063/1.5023778

    Article  CAS  Google Scholar 

  21. Yin X, Long C, Li J, Zhu H, Chen L, Guan J, Li X (2015) Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays. Sci Rep 5:15367. https://doi.org/10.1038/srep15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sood D, Tripathi CC (2017) A compact ultrathin ultra-wideband metamaterial microwave absorber. J Microw Optoelectron Electromagn Appl 16(2):514–528. https://doi.org/10.1590/2179-10742017v16i2797

    Article  CAS  Google Scholar 

  23. Li SJ, Wu PX, Xu HX, Zhou YL, Cao XY, Han JF, Zhang C, Yang HH, Zhang Z (2018) Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Res Lett 13(1):386. https://doi.org/10.1186/s11671-018-2810-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Z, Chen K, Zhao J, Chen P, Jiang T, Zhu B, Feng Y, Li Y (2017) Metasurface Salisbury screen: achieving ultra-wideband microwave absorption. Opt Express 25(24):30241–30252. https://doi.org/10.1364/OE.25.030241

    Article  CAS  PubMed  Google Scholar 

  25. Ullah H, Khan AD, Noman M, Rehman AU (2017) Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array. Plasmonics 13(2):591–597. https://doi.org/10.1007/s11468-017-0549-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijun Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Xu, B., Yan, M. et al. Broadband Microwave Absorber with a Double-Split Ring Structure. Plasmonics 15, 1863–1867 (2020). https://doi.org/10.1007/s11468-020-01209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01209-4

Keywords

Navigation