Skip to main content
Log in

Root cryobanking: an important tool in plant cryopreservation

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cryopreservation in liquid nitrogen (− 196 °C) ensures safe and cost-effective conservation of plant genetic resources using diverse materials, including roots. To date, successful cryopreservation of root explants isolated from in vitro grown plants as well as adventitious and hairy root cultures has been reported in large numbers of plant species. In particular, significant progress has been made in cryopreserving in vitro cultures of adventitious and hairy roots that attract both scientific and commercial interest as an alternative source of plant-derived bioactive compounds with potential application in pharmaceutical, cosmetic, and natural health product industries. The process of cryopreservation has been shown to have little or no impact on growth, and biosynthetic and genetic stability of roots following recovery in an ambient growth environment. However, structural integrity of roots is critical for successful cryopreservation as thin and fragile root tips are very sensitive to stressful conditions associated with various steps of a cryopreservation protocol and a thorough optimization of each step, particularly the treatment with vitrification solution, is essential. This review summarizes the results of recent studies on cryopreservation of plant roots and highlights the importance of continued research in this area.

Key message

Roots are uniquely suited for long term conservation of plant genetic resources due to their ease of excision, in vitro maintenance, and the ability to undergo morphogenesis. The root based regeneration and cryopreservation systems offer excellent opportunities to investigate a range of regulatory signalling and adaptation mechanisms that are activated in response to physical and chemical stresses. This review summarizes the results of recent studies on cryopreservation of plant roots, including hairy and adventitious root cultures used in biotechnology, and underpins their significance in biobanking of economically important food, ornamental, and medicinal crops, as well as, endangered plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acker JP, Adkins S, Alves A, Horna D, Toll J (2017) Feasibility study for a safety back-up cryopreservation facility. - Independent expert report.

  • Agrawal A, Singh S, Malhotra EV, Meena DPS, Tyagi RK (2019) In Vitro conservation and cryopreservation of clonally Propagated horticultural species. In: Rajasekharan P, Rao V (eds) Conservation and Utilization of Horticultural Genetic Resources. Springer, Singapore, pp 529–578

    Google Scholar 

  • Bajaj YPS (1978) Tuberization in potato plants regenerated from freeze-preserved meristems. Crop Improv 5:137–141

    Google Scholar 

  • Bajaj YPS (1987) Cryopreservation of potato germplasm. In: Bajaj YPS (eds) Potato. Biotechnology in Agriculture and Forestry, vol 3. Springer, Berlin, Heidelberg, pp. 472–486.

    Google Scholar 

  • Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267

    CAS  PubMed  Google Scholar 

  • Benson EE (1990) Free radical damage in stored plant germplasm. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Benson EE, Bremner D (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, USA, pp 205–241

    Google Scholar 

  • Benson EE, Hamill JD (1991) Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tiss Organ Cult 24:163–172

    CAS  Google Scholar 

  • Benson EE, Lynch PT, Jones J (1992) The detection of lipid peroxidation products in cryoprotected and frozen rice cells: consequences for post-thaw survival. Plant Sci 85:107–114

    CAS  Google Scholar 

  • Bettoni JC, Bonnart R, Shepherd A, Kretzschmar AA, Volk GM (2019) Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations. J Grapevine Res 58:71–78

    CAS  Google Scholar 

  • Chen G, Ren L, Zhang J, Reed BM, Zhang D, Shen X (2015) Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiol 70:38–47

    CAS  Google Scholar 

  • da Silva Cordeiro L, Collin M, Callado CH, Albarello N, Engelmann F (2020) Long-term conservation of Tarenaya rosea (Cleomaceae) root cultures: histological and histochemical analyses during cryopreservation using the encapsulation-vitrification technique. Protoplasma (on-line first)

  • da Silva Cordeiro L, Simões-Gurgel C, Albarello N (2015) Multiplication and cryopreservation of adventitious roots of Cleome rosea Vahl. In Vitro Cell Dev Biol Plant 51: 249–257.

    Google Scholar 

  • da Silva Cordeiro L, Simões-Gurgel C, Albarello N (2016) Cryopreservation of adventitious roots of Cleome rosea Vahl (Cleomaceae) using a vitrification technique and assessment of genetic stability. CryoLetters 37:231–242

    Google Scholar 

  • Dhanya CS (2014) Cryopreservation of hairy root culture of Amrithapala, Decalepis arayalpathra (Joseph & Chandras) Venter. M.Sc. thesis. Kerala Agricultural University, Thrissur.

  • Dolce NR, Hernández-Ramírez F, González-Arnao MT (2019) Cryopreservation of vanilla (Vanilla planifolia) root-tips: a new alternative for in vitro long-term storage of its germplasm. Acta Hortic 1234:203–210

    Google Scholar 

  • Dwivedi SL, Stoddard FL, Ortiz R (2019) Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. Plant Sci. In press. https://doi.org/10.1016/j.plantsci.2019.110365.

    Article  PubMed  Google Scholar 

  • Engelmann F, Arnao MTG, Wu Y, Escobar R (2008) Development of encapsulation dehydration. In: Reed BM (ed) Plant Cryopreservation: A Practical Guide. Springer, New York, NY, pp 59–75

    Google Scholar 

  • Erland LAE, Saxena PK (2018) Melatonin in plant morphogenesis. Vitro Cell Dev Biol Plant 54:3–24

    CAS  Google Scholar 

  • Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK (2018) Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res 66:e12527

    PubMed  Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. CryoLetters 11:413–426

    Google Scholar 

  • Fahy GM (2010) Cryoprotectorant toxicity neutralization Cryobiol 60(3 Suppl):45–53

    Google Scholar 

  • Funnekotter B, Mancera RL, Bunn E (2017) Advances in understanding the fundamental aspects required for successful cryopreservation of Australian flora. In Vitro Cell Dev Biol —Plant 53: 289–298.

    Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537. https://doi.org/10.1016/j.tibtech.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  • Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of In vitro tissues of deciduous forest trees. In: Reed BM (ed) Plant Cryopreservation: A Practical Guide. Springer, New York, NY, pp 365–386

    Google Scholar 

  • Häkkinen S, Moyano E, Cusidó RM, Oksman-Caldentey KM (2016) Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Frontiers in Plant Science 7:1–9

    Google Scholar 

  • Hargreaves C, Grace L, Holden D (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45. https://doi.org/10.1007/s00299-002-0478-4

    Article  CAS  Google Scholar 

  • Hirata K, Goda S, Phunchindawan M, Du D, Ishio M, Sakai A, Miyamoto K (1998) Cryopreservation of horseradish hairy root culture by encapsulation-dehydration. J Ferment Bioeng 86:418–420

    CAS  Google Scholar 

  • Hirata K, Monthana P, Sakai A, Miyamoto K (2002a) Cryopreservation of Armoracia rusticana P. Gaert., B. Mey. et Scherb. (horseradish) hairy root cultures. In: Towill L.E., Bajaj Y.P.S. (eds) Cryopreservation of Plant Germplasm II. Biotechnology in Agriculture and Forestry, vol 50. Springer, Berlin, Heidelberg, 57–65.

    Google Scholar 

  • Hirata K, Mukai M, Goda S, Ishio-Kinugasa M, Yoshida K, Sakai A, Miyamoto K (2002) Cryopreservation of hairy root cultures of Vinca minor (L.) by encapsulation-dehydration. Biotech Lett 24:371–376

    CAS  Google Scholar 

  • Höfer M, Hanke M (2017) Cryopreservation of fruit germplasm. Vitro Cell Dev Biol - Plant 53:372–381

    Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48(2):121–127

    CAS  Google Scholar 

  • Hu L, Xie Y, Fan S, Wang Z et al (2018) Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Sci 272:276–293

    CAS  PubMed  Google Scholar 

  • Jenderek MM, Reed B (2017) Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cell Dev Biol – Plant 53: 229–308.

    Google Scholar 

  • Jung DW, Sung CK, Touno K, Yoshimatsu K, Shimomura K (2001) Cryopreservation of Hyoscyamus niger adventitious roots by vitrification. J Plant Physiol 158:801–805

    CAS  Google Scholar 

  • Kim HH, Kong HJ, Baek HJ, Shin DJ, Kang HN, Popova EV (2014) Development of droplet-vitrification protocol for madder hairy roots: a systematic approach using alternative cryoprotectant solution. Acta Hort 1039:107–112

    Google Scholar 

  • Kim HH, Lee YG, Shin DJ, Ko HC, Gwag JG, Cho EG, Engelmann F (2009) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30:320–334

    CAS  PubMed  Google Scholar 

  • Kim HH, Popova EV, Shin DJ, Bae CH, Baek HJ, Park SU, Engelmann F (2012) Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach. CryoLetters 33:506–517

    CAS  PubMed  Google Scholar 

  • Kim HH, Popova EV, Yi JY, Cho GT, Park SU, Lee SC, Engelmann F (2010) Cryopreservation of hairy roots of Rubia akane (Nakai) using a droplet-vitrification procedure. CryoLetters 31:473–484

    PubMed  Google Scholar 

  • Lambardi M, Ozudogru EA, Benelli C (2008) Cryopreservation of Embryogenic Cultures. In: Reed BM (ed) Plant Cryopreservation: A Practical Guide. Springer, New York, NY, pp 177–210

    Google Scholar 

  • Lambert E, Geelen D (2007) Cryopreservation of hairy root cultures from Maesa lanceolata. Commun Agric Appl Biol Sci 72:225–228

    CAS  PubMed  Google Scholar 

  • Lambert E, Goossens A, Panis B, Van Labeke MC, Geelen D (2009) Cryopreservation of hairy root cultures of Maesa lanceolata and Medicago truncatula. Plant Cell Tiss Org Cult 96:289–296

    Google Scholar 

  • Le KC, Kim HH, Park SY (2019) Modification of the droplet-vitrification method of cryopreservation to enhance survival rates of adventitious roots of Panax ginseng. Hort Environ Biotechnol 60:501–510

    CAS  Google Scholar 

  • Malik SK, Chaudhury R (2019) Cryopreservation techniques for conservation of tropical horticultural species using various explants. In: Rajasekharan P, Rao V (eds) Conservation and Utilization of Horticultural Genetic Resources. Springer, New York, pp 579–594

    Google Scholar 

  • Mandal BB, Dixit-Sharma S (2007) Cryopreservation of in vitro shoot tips of Dioscorea deltoidea Wall., an endangered medicinal plant: effect of cryogenic procedure and storage duration. CryoLetters 28:460–470

    CAS  PubMed  Google Scholar 

  • Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiol 46:182–189

    PubMed  Google Scholar 

  • Matsumoto T, Niino T (2014) The development of plant vitrification solution 2 and recent PVS2- based vitrification protocols. Acta Hort 1039:21–28

    Google Scholar 

  • Murthy HN, Paek KY (2014) Food ingredients from plant cell, tissue and organ cultures: Bio-safety and efficacy evaluations. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht, pp 655–692

    Google Scholar 

  • Murthy HN, Paek KY (2016) Panax ginseng adventitious root suspension culture: Protocol for biomass production and analysis of ginsenosides by high pressure liquid chromatography. In: Jain S (ed) Protocols for in vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Second Edition. Methods in Molecular Biology, vol 1391. Humana Press, New York, NY, pp. 125–139.

    Google Scholar 

  • Murthy NH, Paek KY, Dandin V (2016) Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev 15:129–145

    CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano AY, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    CAS  Google Scholar 

  • Normah MN, Sulong N, Reed BM (2019) Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiol 87:1–14

    CAS  PubMed  Google Scholar 

  • O’Brien C, Constantin M, Walia A, Lim Yuan Yiing J, Mitter N (2016) Cryopreservation of somatic embryos for avocado germplasm conservation. Sci Hort 211:328–335

    Google Scholar 

  • Oh SY, Wu CH, Popova E, Hahn EJ, Paek KY (2009) Cryopreservation of Panax ginseng adventitious roots. J Plant Biol 52:348–354

    CAS  Google Scholar 

  • Panis B (2019) Sixty years of plant cryopreservation: from freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic 1234:1–8. https://doi.org/10.17660/ActaHortic.2019.1234.1

    Article  Google Scholar 

  • Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources. Ruane J, Sonnino A (eds). Rome, Italy: United Nations Food and Agriculture Organi-zation (FAO), pp. 61–78.

    Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    CAS  Google Scholar 

  • Park SU, Kong H, Shin DJ, Bae CH, Lee SC, Bae CH, Rha ES, Kim HH (2014) Development of vitrification protocol in Rubia akane (Nakai) hairy roots using a systematic approach. CryoLetters 35:138–144

    CAS  PubMed  Google Scholar 

  • Pence VC (2014) In vitro methods and cryopreservation: tools for endangered exceptional species preservation and restoration. Acta Hort 1039:73–79

    Google Scholar 

  • Popova E, Kim HH, Saxena PK, Engelmann F, Pritchard HW (2016) Frozen beauty: The cryobiotechnology of orchid diversity. Biotech Adv 34:380–403

    Google Scholar 

  • Popova E, Shukla M, Kim HH, Saxena PK (2015) Plant cryopreservation for biotechnology and breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular tools. Springer International Publishing, Berlin, pp 63–93

    Google Scholar 

  • Rathwell R, Popova E, Shukla MR, Saxena PK (2016) Development of cryopreservation methods for cherry birch (Betula lenta L.), an endangered tree species in Canada. Can J For Res 46:1–9

    Google Scholar 

  • Reed BM (2017) Plant cryopreservation: a continuing requirement for food and ecosystem security. Vitro Cell Dev Biol - Plant 53:285–288

    CAS  Google Scholar 

  • Ren L, Zhang D, Jiang XN, Gai Y, Wang WM, Reed BM, Shen XH (2013) Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Sci 212:37–47

    CAS  PubMed  Google Scholar 

  • Ren L, Zhang D, Shen XH, Reed BM (2014) Antioxidants and anti-stress compounds improve the survival of cryopreserved Arabidopsis seedlings. Acta Hortic 1039:57–62

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama IE (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    CAS  PubMed  Google Scholar 

  • Salama A, Popova E, Jones MP, Shukla MR, Fisk NS, Saxena PK (2018) Cryopreservation of the critically endangered golden paintbrush (Castilleja levisecta Greenm.): from nature to cryobank to nature. In Vitro Cell Dev Biol – Plant 54: 69–78.

    CAS  Google Scholar 

  • Salma M, Engelmann-Sylvestre I, Collin M, Escoute J, Lartaud M, Yi JY, Kim HH, Verdeil JL, Engelmann F (2014) Effect of the successive steps of a cryopreservation protocol on the structural integrity of Rubia akane Nakai hairy roots. Protoplasma 251:649–659

    CAS  PubMed  Google Scholar 

  • Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L, Wu D, Zhang G (2018) Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiol Biochem 123:319–330

    CAS  PubMed  Google Scholar 

  • Shin DJ, Lee HE, Bae CH, Park SU, Kang HN, Kim HH (2014) Development of an encapsulation-vitrification protocol for Rubia akane (Nakai) hairy roots: a comparison with non- encapsulation. CryoLetters 35:377–384

    PubMed  Google Scholar 

  • Simão MJ, Collin M, Garcia RO, Mansur E, Pacheco G, Engelmann F (2018) Histological characterization of Passiflora pohlii Mast. root tips cryopreserved using the V-Cryo-plate technique. Protoplasma 255:741–750

    PubMed  Google Scholar 

  • Solis-Castañeda GJ, Zamilpa A, Cabañas-García E, Bahena SM, Pérez-Molphe-Balch E, Gómez-Aguirre YA (2020) Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae). In Vitro Cell Dev Biol - Plant. doi:10.1007/s11627–019–10029-z

    Article  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35:543–584

    CAS  Google Scholar 

  • Stiles AR, Liu CZ (2013) Hairy root culture: bioreactor design and process intensification. In: Doran P (ed) Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/Biotechnology, vol 134. Springer, Berlin, Heidelberg, pp. 91–114.

  • Subbarayan K, Rolletschek H, Senula A, Ulagappan K, Hajirezaeiand M-R, Keller ERJ (2015) Influence of oxygen deficiency and the role of specific amino acids in cryopreservation of garlic shoot tips. BMC Biotechnol 15:40

    PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotech Rep 2:123–131

    Google Scholar 

  • Thammasiri K (2008) Cryopreservation of some Thai orchid species. Acta Hort 788:53–62

    Google Scholar 

  • Teoh KH, Weathers PJ, Cheetham RD, Walcerz DB (1996) Cryopreservation of transformed (hairy) roots of Artemisia annua. Cryobiol 33:106–117

    CAS  PubMed  Google Scholar 

  • Touno K, Yoshimatsu K, Shimomura K (2006) Characteristics of Atropa belladonna hairy roots cryopreserved by vitrification method. CryoLetters 27:65–72

    CAS  PubMed  Google Scholar 

  • Towill LE, Bonnart R (2003) Cracking in a vitrification solution during cooling or warming does not affect growth of cryopreserved mint shoot tips. CryoLetters 24:341–346

    PubMed  Google Scholar 

  • Uchendu EE, Keller JER (2016) Melatonin-loaded alginate beads improve cryopreservation of yam (Dioscorea alata and D. cayenensis). CryoLetters 37:77–87

    CAS  PubMed  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    CAS  PubMed  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J Pineal Res 55:435–442

    CAS  PubMed  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2014) An efficient method for cryopreservation of St. John’s wort and tobacco: Role of melatonin. Acta Hortic 1039:233–241

    Google Scholar 

  • Uemura M, Steponkus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112:245–254

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for production of plant secondary metabolites. Phytochem Rev 1:13–25

    CAS  Google Scholar 

  • Verstraeten I, Beeckman T, Geelen D (2013) Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis. Meth Mol Biol 959:159–175

    CAS  Google Scholar 

  • Volk GM (2010) Application of functional genomics and proteomics to plant cryopreservation. Curr Gen 11:24–29

    CAS  Google Scholar 

  • Volk GM, Bonnart R, Shepherd A, Krueger R, Lee R (2015) Cryopreservation of citrus for long term conservation. Acta Hortic 1065:187–191

    Google Scholar 

  • Vollmer R, Villagaray R, Cárdenas J, Castro M, Chávez O, Anglin NL, Ellis D (2017) A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). Vitro Cell Dev Biol - Plant 53:309–317

    Google Scholar 

  • Wang B, Wang RR, Cui ZH, Bi WL, Li JW, Li BQ (2014) Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnol Adv 32:583–595

    CAS  PubMed  Google Scholar 

  • Xue SH, Luo XJ, Wu ZH, Zhang HL, Wang XY (2008) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill. Astragalus membranaceus and Gentiana macrophylla Pall. Plant Cell Tiss Org Cult 92:251–260

    Google Scholar 

  • Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. Cryo Lett 32:256–265

    CAS  Google Scholar 

  • Yang T, Medina-Bolivar F, Joshee N (2014) Metabolic engineering and biotransformation of flavonoids in hairy root cultures of Scutellaria lateriflora. Vitro Cell Dev Biol - Animal 107:50–60

    Google Scholar 

  • Yang X, Popova E, Shukla MR, Saxena P (2019) Root cryopreservation to biobank medicinal plants: a case study for Hypericum perforatum L. Vitro Cell Dev Biol - Plant 55:392–402

    CAS  Google Scholar 

  • Yi JY, Sylvestre I, Collin M, Salma M, Lee SY, Kim HH, Park HJ, Engelmann F (2012) Improved cryopreservation using droplet-vitrification method andhistological changes associated withcryopreservation of madder (Rubia akane Nakai). Kor J Hort Sci Technol 30:79–84

    Google Scholar 

  • Yıldırım K, Yağcı A, Sucu S, Tunç S (2018) Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol Biochem 127:256–268

    PubMed  Google Scholar 

  • Yoshimatsu K, Yamaguchi H, Shimomura K (1996) Traits of Panax ginseng hairy roots after cold storage and cryopreservation. Plant Cell Rep 15:555–560

    CAS  PubMed  Google Scholar 

  • Zhao Y, Qi LW, Wang WM, Saxena PK, Liu CZ (2011) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50:83–88

    CAS  PubMed  Google Scholar 

  • Zobayed SMA, Saxena PK (2003) In vitro-grown roots: a superior explant for prolific shoot regeneration of St. John's wort (Hypericum perforatum L. cv ‘New Stem’) in a temporary immersion bioreactor. Plant Sci 165:463–470

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for supporting discovery research on plant stress and morphogenesis. Contribution of E. Popova is supported by Megagrant funding (project no. 075-15-2019-1882) from the Ministry of Science and Higher Education of Russian Federation for the “Research-and-production complex for study, preservation and practical use of cell cultures and organs of higher plants and microalgae”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Popova or Praveen K. Saxena.

Additional information

Communicated by Ranjith Pathirana.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E., Shukla, M., Kim, HH. et al. Root cryobanking: an important tool in plant cryopreservation. Plant Cell Tiss Organ Cult 144, 49–66 (2021). https://doi.org/10.1007/s11240-020-01859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01859-6

Keywords

Navigation