Skip to main content
Log in

Autonomous search in a social and ubiquitous Web

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Recent W3C recommendations for the Web of Things (WoT) and the Social Web are turning hypermedia into a homogeneous information fabric that interconnects heterogeneous resources: devices, people, information resources, abstract concepts, etc. The integration of multi-agent systems with such hypermedia environments now provides a means to distribute autonomous behavior in worldwide pervasive systems. A central problem then is to enable autonomous agents to discover heterogeneous resources in worldwide and dynamic hypermedia environments. This is a problem in particular in WoT environments that rely on open standards and evolve rapidly—thus requiring agents to adapt their behavior at run time in pursuit of their design objectives. To this end, we developed a hypermedia search engine for the WoT that allows autonomous agents to perform approximate search queries in order to retrieve relevant resources in their environment in (weak) real time. The search engine crawls dynamic WoT environments to discover and index device metadata described with the W3C WoT Thing Description, and exposes a SPARQL endpoint that agents can use for approximate search. To demonstrate the feasibility of our approach, we implemented a prototype application for the maintenance of industrial robots in worldwide manufacturing systems. The prototype demonstrates that our semantic hypermedia search engine enhances the flexibility and agility of autonomous agents in a social and ubiquitous Web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Listing 1
Fig. 4

Similar content being viewed by others

Notes

  1. http://nodered.org/, accessed: April 15, 2020.

  2. http://www.ifttt.com/, accessed: April 15, 2020.

  3. https://github.com/thingWeb/thingWeb-directory/, accessed: April 15, 2020.

  4. https://project.inria.fr/corese/

  5. https://github.com/thingWeb/thingWeb-directory/, accessed: April 15, 2020.

  6. This design choice draws from a line of research on engineering agent environments [51].

  7. See [7] for a more detailed discussion.

  8. Such as the activity of the W3C Social Web Working Group (https://www.w3.org/Social/WG) and Interest Group (https://www.w3.org/Social/IG).

  9. https://w3id.org/stn

  10. The color code values used in our demonstrator correspond to nuances of green and red used by Philips Hue.

  11. https://github.com/Interactions-HSG/yggdrasil/tree/iot2019/

  12. See https://project.inria.fr/corese/ and also http://corese.inria.fr/

  13. https://vertx.io/, accessed: April 15, 2020.

  14. https://github.com/Interactions-HSG/wot-search/

  15. https://github.com/Wimmics/corese

  16. https://youtu.be/iuTzzMA-7FI

  17. https://github.com/Interactions-HSG/wot-search-manufacturing/

  18. https://github.com/Interactions-HSG/leubot

  19. https://github.com/thingWeb/thingWeb-directory/, accessed: September 08, 2019.

References

  1. Acosta M, Hartig O, Sequeda J (2018) Federated RDF query processing. Springer International Publishing, Cham, pp 1–8. https://doi.org/10.1007/978-3-319-63962-8_228-1

    Google Scholar 

  2. Bienz S, Ciortea A, Mayer S, Gandon F., Corby O (2019) Escaping the streetlight effect: semantic hypermedia search enhances autonomous behavior in the Web of Things. In: 9th International conference on the internet of things. https://www.alexandria.unisg.ch/257439/

  3. Boissier O, Bordini RH, Hübner JF, Ricci A, Santi A (2013) Multi-agent oriented programming with jacamo. Sci Comput Program 78(6):747–761. https://doi.org/10.1016/j.scico.2011.10.004. http://www.sciencedirect.com/science/article/pii/S016764231100181Xhttp://www.sciencedirect.com/science/article/pii/S016764231100181X

    Article  Google Scholar 

  4. Bordini RH, Hübner JF, Wooldridge M (2007) Programming multi-agent systems in AgentSpeak using Jason, vol 8. Wiley

  5. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Netw ISDN Syst 30(1):107–117. https://doi.org/10.1016/S0169-7552(98)00110-X. http://www.sciencedirect.com/science/article/pii/S016975529800110X. Proceedings of the Seventh International World Wide Web Conference

    Article  Google Scholar 

  6. Ciortea A, Boissier O, Ricci A (2017) Beyond physical mashups: autonomous systems for the Web of Things. In: Proceedings of the eighth international workshop on the Web of things, WoT 2017. http://doi.acm.org/10.1145/3199919.3199924. ACM, New York, pp 16–20

  7. Ciortea A, Boissier O, Ricci A Weyns D, Mascardi V, Ricci A (eds) (2019) Engineering world-wide multi-agent systems with hypermedia. Springer International Publishing, Cham

  8. Ciortea A, Mayer S, Gandon F, Boissier O, Ricci A, Zimmermann A (2019) A decade in hindsight: the missing bridge between multi-agent systems and the World Wide Web. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems, AAMAS 2019, Montreal, Canada, May 13-17, 2019. International foundation for autonomous agents and multiagent systems

  9. Ciortea A, Mayer S, Michahelles F (2018) Repurposing manufacturing lines on the fly with multi-agent systems for the Web of Things. In: Proceedings of the 17th international conference on autonomous agents and multiagent systems (AAMAS), pp 813–822. https://www.alexandria.unisg.ch/255802/

  10. Ciortea A, Zimmermann A, Boissier O, Florea AM (2015) Towards a social and ubiquitous Web: a model for socio-technical networks. In: 2015 IEEE/WIC/ACM international conference on Web intelligence and intelligent agent technology (WI-IAT). https://doi.org/10.1109/WI-IAT.2015.205, vol 1, pp 461–468

  11. Ciortea A, Zimmermann A, Boissier O, Florea AM (2016) Hypermedia-driven socio-technical networks for goal-driven discovery in the Web of Things. In: Proceedings of the seventh international workshop on the Web of Things, WoT ’16. http://doi.acm.org/10.1145/3017995.3018001. ACM, New York, pp 25–30

  12. Corby O, Dieng-Kuntz R, Gandon F, Faron-Zucker C (2006) Searching the semantic Web: approximate query processing based on ontologies. IEEE Intell Syst 21(1):20–27. https://doi.org/10.1109/MIS.2006.16

    Article  Google Scholar 

  13. Corby O, Gaignard A, Faron-Zucker C, Montagnat J (2012) KGRAM versatile inference and query engine for the Web of linked data. In: IEEE/WIC/ACM International conference on Web intelligence. https://hal.archives-ouvertes.fr/hal-00746772, Macao, pp 1–8

  14. Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax, W3C recommendation 25 February 2014. W3C Recommendation World Wide Web Consortium (W3C). http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

  15. Duerst M, Suignard M (2005) Internationalized resource identifiers (IRIs) RFC 3987 (proposed standard). http://www.ietf.org/rfc/rfc3987.txt

  16. Fielding RT, Taylor RN (2002) Principled design of the modern Web architecture. ACM Trans Internet Technol 2(2):115–150. http://doi.acm.org/10.1145/514183.514185

    Article  Google Scholar 

  17. Gandon F (2018) A survey of the first 20 years of research on semantic Web and linked data. Revue des Sciences et Technologies de l’Information - Série IS. Ingénierie des Systèmes d’Information. https://doi.org/10.3166/ISI.23.3-4.11-56, https://hal.inria.fr/hal-01935898

  18. Genestoux J, Parecki A (2018) WebSub, W3C Recommendation 23 January 2018. W3C Recommendation World Wide Web Consortium (W3C). https://www.w3.org/TR/2018/REC-Websub-20180123/

  19. Georgeff MP, Lansky AL (1987) Reactive reasoning and planning. In: AAAI, vol 87, pp 677–682

  20. Guinard D, Trifa V, Pham T, Liechti O (2009) Towards physical mashups in the Web of things. In: 2009 Sixth international conference on networked sensing systems (INSS). IEEE, pp 1–4

  21. Han S, Brodowsky B, Gajda P, Novikov S, Bendersky M, Najork M, Dua R, Popescul A (2019) Predictive crawling for commercial Web content. In: Proceedings of the 2019 World Wide Web conference, pp 627–637

  22. Huang H, Gandon F (2019) Learning URI selection criteria to improve the crawling of linked open data. In: ESWC2019 - The 16th extended semantic Web conference. https://hal.inria.fr/hal-02073854, Portoroz

  23. Hübner JF, Sichman JS, Boissier O (2007) Developing organised multiagent systems using the MOISE+ model: programming issues at the system and agent levels. Int J Agent-Oriented Softw Eng 1(3/4):370–395. https://doi.org/10.1504/IJAOSE.2007.016266

    Article  Google Scholar 

  24. Jennings NR, Wooldridge M (1998) Applications of intelligent agents. Springer, Berlin, pp 3–28. https://doi.org/10.1007/978-3-662-03678-5_1

    Google Scholar 

  25. Kaebisch S, Kamiya T, McCool M, Charpenay V, Kovatsch M (2020) Web of Things (WoT) thing description, W3C Recommendation 9 April 2020. W3C Recommendation World Wide Web Consortium (W3C). https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

  26. Kamilaris A, Yumusak S, Ali MI (2016) Wots2e: a search engine for a semantic Web of Things. In: 2016 IEEE 3rd World forum on internet of things (WF-IoT), pp 436–441, DOI https://doi.org/10.1109/WF-IoT.2016.7845448, (to appear in print)

  27. Kansal A, Nath S, Liu J, Zhao F (2007) SenseWeb: an infrastructure for shared sensing. IEEE MultiMedia 14(4):8–13. https://doi.org/10.1109/MMUL.2007.82

    Article  Google Scholar 

  28. Kovatsch M, Matsukura R, Lagally M, Kawaguchi T, Toumura K, Kajimoto K (2020) Web of Things (WoT) architecture, W3C recommendation 9 April 2020. W3C Recommendation World Wide Web Consortium (W3C). https://www.w3.org/TR/2020/REC-wot-architecture-20200409/

  29. Lanthaler M, Gütl C (2013) Hydra: a vocabulary for hypermedia-driven Web APIs. In: Proceedings of the WWW2013 workshop on linked data on the Web, CEUR WS. http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf, vol 996

  30. Mayer S, Ciortea A, Ricci A, Robles MI, Kovatsch M, Croatti A (2018) Hypermedia to connect them all: autonomous hypermedia agents and socio-technical interactions. Internet Technol Lett 1(4):e50. https://onlinelibrary.wiley.com/doi/abs/10.1002/itl2.50

    Article  Google Scholar 

  31. Mayer S, Guinard D (2011) An extensible discovery service for smart things. In: Proceedings of the second international workshop on Web of things, WoT ’11. http://doi.acm.org/10.1145/1993966.1993976. ACM, New York, pp 7:1–7:6

  32. Mayer S, Guinard D, Trifa V (2012) Searching in a Web-based infrastructure for smart things. In: 2012 3rd IEEE international conference on the internet of things, pp 119–126, DOI https://doi.org/10.1109/IOT.2012.6402313, (to appear in print)

  33. Mayer S, Verborgh R, Kovatsch M, Mattern F (2016) Smart configuration of smart environments. IEEE Trans Autom Sci Eng 13(3):1247–1255. https://www.alexandria.unisg.ch/255762/

    Article  Google Scholar 

  34. Michel F, Faron-Zucker C, Corby O, Gandon F (2019) Enabling automatic discovery and querying of Web APIs at Web scale using linked data standards. In: WWW 2019 - LDOW/LDDL workshop of the world wide Web conference. https://hal.archives-ouvertes.fr/hal-02060966, San Francisco, DOI https://doi.org/10.1145/3308560.3317073, (to appear in print)

  35. Ostermaier B, Römer K, Mattern F, Fahrmair M, Kellerer W (2010) A real-time search engine for the Web of Things. In: 2010 internet of things (IOT), pp 1–8, DOI https://doi.org/10.1109/IOT.2010.5678450, (to appear in print)

  36. Ostermaier B, Römer ., Mattern F, Fahrmair M, Kellerer W (2010) A real-time search engine for the Web of Things. In: Proceedings of Internet of Things 2010 international conference (IoT 2010), Tokyo

  37. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the Web. Technical Report 1999-66 Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120

  38. Pfisterer D, Romer K, Bimschas D, Kleine O, Mietz R, Truong C, Hasemann H, Kröller A, Pagel M, Hauswirth M, Karnstedt M, Leggieri M, Passant A, Richardson R (2011) Spitfire: toward a semantic Web of Things. IEEE Commun Mag 49(11):40–48. https://doi.org/10.1109/MCOM.2011.6069708

    Article  Google Scholar 

  39. Rao AS (1996) Agentspeak (l): Bdi agents speak out in a logical computable language. In: European Workshop on modelling autonomous agents in a multi-agent world. Springer, pp 42–55

  40. Ricci A, Piunti M, Viroli M (2011) Environment programming in multi-agent systems: an artifact-based perspective. Auton Agent Multi-Agent Syst 23(2):158–192

    Article  Google Scholar 

  41. Römer K, Ostermaier B, Mattern F, Fahrmair M, Kellerer W (2010) Real-time search for real-world entities: a survey. Proc IEEE 98(11):1887–1902

    Article  Google Scholar 

  42. Shelby Z, Koster M, Bormann C, van der Stok P, Amusüss C (2020) CoRE resource directory. Internet Draft. Internet Engineering Task Force (IETF). https://tools.ietf.org/html/draft-ietf-core-resource-directory-24

  43. Shoham Y (1993) Agent-oriented programming. Artif Intell 60(1):51–92

    Article  MathSciNet  Google Scholar 

  44. Singh MP (2011) Information-driven interaction-oriented programming: Bspl, the blindingly simple protocol language. In: The 10th International conference on autonomous agents and multiagent systems - volume 2, AAMAS ’11, pp 491–498. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC. http://dl.acm.org/citation.cfm?id=2031678.2031687

  45. Singh MP, Huhns MN (2006) Service-oriented computing: semantics, processes, agents. Wiley. https://doi.org/10.1002/0470091509

  46. Smith T, Guild J (1931) The c.i.e. colorimetric standards and their use. Trans Opt Soc 33(3):73–134. https://doi.org/10.1088/1475-4878/33/3/301

    Article  Google Scholar 

  47. Tan CC, Sheng B, Wang H, Li Q (2010) Microsearch: a search engine for embedded devices used in pervasive computing. ACM Trans Embed Comput Syst 9(4):43,1–43,29. http://doi.acm.org/10.1145/1721695.1721709

    Article  Google Scholar 

  48. Villata S, Gandon F (2012) Licenses compatibility and composition in the Web of Data. In: Proceedings of the Third international conference on consuming linked data - volume 905, COLD’12. http://dl.acm.org/citation.cfm?id=2887367.2887378. CEUR-WS.org, Aachen, pp 124–135

  49. Wang H, Tan CC, Li Q (2010) Snoogle: a search engine for pervasive environments. IEEE Trans Parallel Distrib Syst 21(8):1188–1202. https://doi.org/10.1109/TPDS.2009.145

    Article  Google Scholar 

  50. Weiss G (2000) Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press

  51. Weyns D, Omicini A, Odell J (2007) Environment as a first class abstraction in multiagent systems. Autonom Agents Multi-Agent Syst 14(1):5–30

    Article  Google Scholar 

  52. Yap KK, Srinivasan V, Motani M (2005) Max: human-centric search of the physical world. In: Proceedings of the 3rd international conference on embedded networked sensor systems, SenSys ’05. http://doi.acm.org/10.1145/1098918.1098937. ACM, New York, pp 166–179

  53. Zhou Y, De S, Wang W, Moessner K (2016) Search techniques for the Web of Things: a taxonomy and survey. Sensors 16(5):600

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Ciortea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an extended version of our publication at the 9th International Conference on the Internet of Things (IoT 2019) [2] and positions our search engine for the Web of Things in the broader context of a social and ubiquitous Web, which is presented in Section 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciortea, A., Mayer, S., Bienz, S. et al. Autonomous search in a social and ubiquitous Web. Pers Ubiquit Comput 28, 259–272 (2024). https://doi.org/10.1007/s00779-020-01415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-020-01415-1

Keywords

Navigation