Skip to main content
Log in

Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study the constrained minimizing problem for the energy functional related to the nonlinear Choquard equation

$$\begin{aligned} I(a) = \inf \left\{ E(\phi ) \ : \ \phi \in H^1\big ({\mathbb {R}}^N\big ), \Vert \phi \Vert ^2_{L^2} =a \right\} , \end{aligned}$$

where \(N\ge 1\), \(a>0\),

$$\begin{aligned} E(\phi ) := \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla \phi (x)|^2 dx + \frac{1}{2} \int _{{\mathbb {R}}^N} V(x) |\phi (x)|^2 dx -\frac{1}{2p} \int _{{\mathbb {R}}^N} (I_\alpha * |\phi |^p)(x) |\phi (x)|^p dx \end{aligned}$$

is the energy functional with \(0<\alpha <N\), \(\frac{N+\alpha }{N}<p< \frac{N+\alpha }{N-2}\) if \(N\ge 3\), \(\frac{N+\alpha }{N}<p<\infty \) if \(N=1,2\) and \(I_\alpha \) is the Riesz potential. The external potential \(V: {\mathbb {R}}^N \rightarrow {\mathbb {R}}\) is assumed to satisfy (A1) \(V \in L^q({\mathbb {R}}^N) + L^\infty ({\mathbb {R}}^N)\) with \(q=1\) if \(N=1\), \(q>1\) if \(N=2\) and \(q=\frac{N}{2}\) if \(N\ge 3\) and (A2) for any \(c>0\), \(|\{x \in {\mathbb {R}}^N \ : \ |V(x)| >c \}| <\infty \). We first give a complete classification of existence and non-existence of minimizers for the problem. In the mass-critical case \(p=\frac{N+\alpha +2}{N}\), under an appropriate assumption of the external potential, we give a detailed description of the blow-up behavior of minimizers as the mass tends to a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choquard, P., Stubbe, J., Vuffray, M.: Stationary solutions of the Schrödinger–Newton model—an ODE approach. Differ. Intergal Equ. 21, 665–679 (2008)

    MATH  Google Scholar 

  2. de Oliveira, C.R.: Intermediate Spectral Theory and Quantum Dynamics. Progress in Mathematical Physics 54. Birkhäuser, Berlin (2009)

    Book  Google Scholar 

  3. Dinh, V.D.: Existence, non-existence and blow-up behavior of minimizers for the mass-critical Hartree equations with periodic potentials. (submitted)

  4. Genev, H., Venkov, G.: Soliton and blow-up solutions to the time-dependent Schrödinger–Hartree equation. Discrete Contin. Dyn. Syst. Ser. S 5, 903–923 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Guo, Y., Seiringer, R.: On the mass concentration for Bose–Einstein condenstates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  6. Guo, Y., Zeng, X., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Ann. Inst. Henri Poincaré Non Lineaire Anal. 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  7. Hardy, G.H., Littlewood, J.E.: On certain inequalities connected with the calculus of variations. J. Lond. Math. Soc. 5, 34–39 (1930)

    Article  Google Scholar 

  8. Li, S., Xiang, J., Zeng, X.: Ground states of nonlinear Choquard equations with multi-well potentials. J. Math. Phys. 57, 081515 (2016)

    Article  MathSciNet  Google Scholar 

  9. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 97–105 (1977)

    Article  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics 14, 2nd edn. AMS, Providence (2001)

    MATH  Google Scholar 

  11. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  12. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case: Part 1. Ann. Inst. Henri Poincaré 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  13. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case: Part 1. Ann. Inst. Henri Poincaré 1, 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  14. Menzala, G.P.: On regular solutions of nonlinear equation of Choquard’s type. Proc. R. Soc. Edinb. Sect. A 86, 291–301 (1980)

    Article  MathSciNet  Google Scholar 

  15. Moroz, V., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  Google Scholar 

  16. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  17. Moroz, V., Schaftingen, J.V.: Existence of ground states for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  Google Scholar 

  18. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  19. Phan, T.V.: Blow-up profile of Bose–Einstein condensate with singular potentials. J. Math. Phys. 58, 072301 (2017)

    Article  MathSciNet  Google Scholar 

  20. Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb. 5, 471–479 (1983)

    Google Scholar 

  21. Tod, P., Moroz, M.: An analytical approach to the Schrödinger–Newton equations. Nonlinearity 2, 201–216 (1999)

    Article  Google Scholar 

  22. Wang, Q., Zhao, D.: Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials. J. Differ. Equ. 262, 2684–2704 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ye, H.: Mass minimizers and concentration for nonlinear Choquard equations in \({\mathbb{R}}^N\). Topol. Methods Nonlinear Anal. 48, 393–417 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, J., Zheng, J.: Scattering theory for nonlinear Schrödinger equation with inverse-square potential. J. Funct. Anal. 267, 2907–2932 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The author would like to express his deep gratitude to his wife—Uyen Cong for her encouragement and support. He also would like to thank the reviewer for his/her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Duong Dinh.

Additional information

Communicated by Ansgar Jüngel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, V.D. Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials. Monatsh Math 192, 551–589 (2020). https://doi.org/10.1007/s00605-020-01387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01387-7

Keywords

Mathematics Subject Classification

Navigation