Skip to main content
Log in

Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Clasadonte J, Prevot V (2018) The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14:25–44. https://doi.org/10.1038/nrendo.2017.124

    Article  CAS  PubMed  Google Scholar 

  2. García-Cáceres C, Balland E, Prevot V, Luquet S, Woods S, Koch M, Horvath T, Yi CX et al (2019) Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 22:7–14. https://doi.org/10.1038/s41593-018-0286-y

    Article  CAS  PubMed  Google Scholar 

  3. Dallaporta M, Bonnet MS, Horner K, Trouslard J, Jean A, Troadec JD (2010) Glial cells of the nucleus tractus solitarius as partners of the dorsal hindbrain regulation of energy balance: a proposal for a working hypothesis. Brain Res 1350:35–42. https://doi.org/10.1016/j.brainres.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  4. Douglass JD, Dorfman MD, Fasnacht R, Shaffer LD, Thaler JP (2017) Astrocyte IKKbeta/NF-kappaB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol Metab 6:366–373. https://doi.org/10.1016/j.molmet.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. García-Cáceres C, Fuente-Martín E, Burgos-Ramos E, Granado M, Frago LM, Barrios V, Horvath T, Argente J et al (2011) Differential acute and chronic effects of leptin on hypothalamic astrocyte morphology and synaptic protein levels. Endocrinology. 152:1809–1818. https://doi.org/10.1210/en.2010-1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A et al (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617. https://doi.org/10.1016/j.cmet.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162. https://doi.org/10.1172/JCI59660

    Article  PubMed  Google Scholar 

  8. Zhang Y, Reichel JM, Han C, Zuniga-Hertz J, Cai D (2017) Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure and body weight. Cell Metab 25:1091–1102. https://doi.org/10.1016/j.cmet.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL (2010) Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology. 151:1622–1632. https://doi.org/10.1210/en.2009-1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P et al (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 166:867–880. https://doi.org/10.1016/j.cell.2016.07.028

    Article  CAS  PubMed  Google Scholar 

  11. Horvath TL, Sarman B, García-Cáceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J et al (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107:14875–14880. https://doi.org/10.1073/pnas.1004282107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fuente-Martín E, García-Cáceres C, Granado M, de Ceballos ML, Sánchez-Garrido MÁ, Sarman B, Liu ZW, Dietrich MO et al (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Cli. Invest 122:3900–3913. https://doi.org/10.1172/JCI64102

    Article  CAS  Google Scholar 

  13. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910. https://doi.org/10.1038/nn.3725

    Article  CAS  PubMed  Google Scholar 

  14. Friedman JM (2014) 20 years of leptin: leptin at 20: an overview. J Endocrinol 223:T1-8. https://doi.org/10.1530/JOE-14-0405

  15. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A et al (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19:293–301. https://doi.org/10.1016/j.cmet.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farzampour Z, Reimer RJ, Huguenard J (2015) Endozepines. Adv Pharmacol 72:147–164. https://doi.org/10.1016/bs.apha.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D et al (2020) Endozepines and their receptors: structure, functions and pathophysiological significance. Pharmacol Ther 208:107386. https://doi.org/10.1016/j.pharmthera.2019.06.008

  18. Tonon MC, Désy L, Nicolas P, Vaudry H, Pelletier G (1990) Immunocytochemical localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat brain. Neuropeptides 15:17–24. https://doi.org/10.1016/0143-4179(90)90155-r

  19. Guillebaud F, Girardet C, Abysique A, Gaigé S, Barbouche R, Verneuil J, Jean A, Leprince J et al (2017) Glial endozepines inhibit feeding-related autonomic functions by acting at the brainstem level. Front Neurosci 11:308. https://doi.org/10.3389/fnins.2017.00308

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Mateos-Verchere JG, Leprince J, Tonon MC, Vaudry H, Costentin J (2001) The octadecaneuropeptide [diazepam-binding inhibitor (33-50)] exerts potent anorexigenic effects in rodents. Eur J Pharmacol 414:225–231. https://doi.org/10.1016/s0014-2999(01)00771-3

    Article  PubMed  Google Scholar 

  21. Matsuda K, Wada K, Miura T, Maruyama K, Shimakura SI, Uchiyama M, Leprince J, Tonon MC et al (2007) Effect of the diazepam-binding inhibitor-derived peptide, octadecaneuropeptide, on food intake in goldfish. Neuroscience. 150:425–432. https://doi.org/10.1016/j.neuroscience.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  22. Lanfray D, Arthaud S, Ouellet J, Compère V, Do Rego JL, Leprince J, Lefranc B, Castel H et al (2013) Gliotransmission and brain glucose sensing: Critical role of endozepines. Diabetes 62:801–810. https://doi.org/10.2337/db11-0785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. do Rego JC, Orta MH, Leprince J, Tonon MC, Vaudry H, Costentin J (2007) Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake. Neuropsychopharmacology 32:1641–1648. https://doi.org/10.1038/sj.npp.1301280

    Article  CAS  PubMed  Google Scholar 

  24. Compère V, Li S, Leprince J, Tonon MC, Vaudry H, Pelletier G (2003) Effect of intracerebroventricular administration of the octadecaneuropeptide on the expression of pro-opiomelanocortin, neuropeptide Y and corticotropin-releasing hormone mRNAs in rat hypothalamus. J Neuroendocrinol 15:197–203. https://doi.org/10.1046/j.1365-2826.2003.00970.x

  25. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110–115. https://doi.org/10.1126/science.1089459

    Article  CAS  PubMed  Google Scholar 

  26. Leprince J, Gandolfo P, Thoumas JL, Patte C, Fauchère JL, Vaudry H, Tonon MC (1998) Structure-activity relationships of a series of analogues of the octadecaneuropeptide ODN on calcium mobilization in rat astrocytes. J Med Chem 41:4433–4438. https://doi.org/10.1021/jm980275d

    Article  CAS  PubMed  Google Scholar 

  27. Gaigé S, Djelloul M, Tardivel C, Airault C, Félix B, Jean A, Lebrun B, Troadec JD et al (2014) Modification of energy balance induced by the food contaminant T-2 toxin: a multimodal gut-to-brain connection. Brain Behav Immun 37:54–72. https://doi.org/10.1016/j.bbi.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  28. Bellefontaine N, Chachlaki K, Parkash J, Vanacker C, Colledge W, d’Anglemont de Tassigny X, Garthwaite J, Bouret SG et al (2014) Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J. Clin. Invest 124:2550–2559. https://doi.org/10.1172/JCI65928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Girardet C, Bonnet MS, Jdir R, Sadoud M, Thirion S, Tardivel C, Roux J, Lebrun B et al (2016) The food-contaminant deoxynivalenol modifies eating by targeting anorexigenic neurocircuitry. PLoS One 6:e26134. https://doi.org/10.1371/journal.pone.0026134

    Article  CAS  Google Scholar 

  30. Dallaporta M, Pecchi E, Pio J, Jean A, Horner KC, Troadec JD (2009) Expression of leptin receptor by glial cells of the nucleus tractus solitarius: possible involvement in energy homeostasis. J Neuroendocrinol 21:57–67. https://doi.org/10.1111/j.1365-2826.2008.01799.x

    Article  CAS  PubMed  Google Scholar 

  31. Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A (2013) Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc 8:1149–1154. https://doi.org/10.1038/nprot.2013.055

    Article  CAS  PubMed  Google Scholar 

  32. Andrey P, Maurin Y (2005) Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Methods 45:233–244. https://doi.org/10.1016/j.jneumeth.2005.01.006

    Article  Google Scholar 

  33. Ghouili I, Bahdoudi S, Morin F, Amri F, Hamdi Y, Coly PM, Walet-Balieu ML, Leprince J et al (2018) Endogenous expression of ODN-related peptides in astrocytes contributes to cell protection against oxidative stress: astrocyte-neuron crosstalk relevance for neuronal survival. Mol Neurobiol 55:4596–4611. https://doi.org/10.1007/s12035-017-0630-3

    Article  CAS  PubMed  Google Scholar 

  34. Vaudry H, Tonon MC, Delarue C, Vaillant R, Kraicer J (1978) Biological and radioimmunological evidence for melanocyte stimulating hormones (MSH) of extrapituitary origin in the rat brain. Neuroendocrinology. 27:9–24. https://doi.org/10.1159/000122796

    Article  CAS  PubMed  Google Scholar 

  35. Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, Troadec JD (2007) Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol 501:353–368. https://doi.org/10.1002/cne.21259

    Article  CAS  PubMed  Google Scholar 

  36. Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013) Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521:3389–3405. https://doi.org/10.1002/cne.23355

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hokfelt T, Foster G, Schultzberg M, Meister B, Schalling M, Goldstein M, Hemmings HC Jr, Ouimet C et al (1988) DARPP-32 as a marker for D-1 dopaminoceptive cells in the rat brain: prenatal development and presence in glial elements (tanycytes) in the basal hypothalamus. Adv Exp Med Biol 235:65–82. https://doi.org/10.1007/978-1-4899-2723-1_6

    Article  CAS  PubMed  Google Scholar 

  38. Sidibe A, Mullier A, Chen P, Baroncini M, Boutin JA, Delagrange P, Prevot V, Jockers R (2010) Expression of the orphan GPR50 protein in rodent and human dorsomedial hypothalamus, tanycytes and median eminence. J Pineal Res 48:263–269. https://doi.org/10.1111/j.1600-079X.2010.00750.x

    Article  CAS  PubMed  Google Scholar 

  39. Barrachina MD, Martínez V, Wang L, Wei JY, Taché Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci U S A 94:10455–10460. https://doi.org/10.1073/pnas.94.19.10455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halpern Z, Elinav E, Gertler A (2011) Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem 286:4429–4442. https://doi.org/10.1074/jbc.M110.196402

    Article  CAS  PubMed  Google Scholar 

  41. Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286. https://doi.org/10.1113/jphysiol.2010.202051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prevot V, Dehouck B, Sharif A, Ciofi P, Giaconini P, Clasadonte J (2018) The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 39:333–368. https://doi.org/10.1210/er.2017-00235

    Article  PubMed  Google Scholar 

  43. Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, Gallet S, Balland E et al (2015) Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 6:6385. https://doi.org/10.1038/ncomms7385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alho H, Fremeau RT Jr, Tiedge H, Wilcox J, Bovolin P, Brosius J, Roberts JL, Costa E (1988) Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat. Proc Natl Acad Sci U S A 85:7018–7022. https://doi.org/10.1073/pnas.85.18.7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seeley RJ, Blake K, Rushing PA, Benoit S, Eng J, Woods SC, D’Alessio D (2000) The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 20:1616–1621. https://doi.org/10.1523/JNEUROSCI.20-04-01616.2000

  46. Yamamoto K, Yamatodani A (2018) Strain differences in the development of cisplatin-induced pica behavior in mice. J Pharmacol Toxicol Methods 91:66–71. https://doi.org/10.1016/j.vascn.2018.01.559

    Article  CAS  PubMed  Google Scholar 

  47. van Swieten MM, Pandit R, Adan RA, van der Plasse G (2014) The neuroanatomical function of leptin in the hypothalamus. J. Chem. Neuroanat 61-62:207–220. https://doi.org/10.1016/j.jchemneu.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  48. Dragunow M, Faull R (1989) The use of c-Fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265. https://doi.org/10.1016/0304-3940(90)90341-6

  49. Bouyakdan K, Martin H, Liénard F, Budry L, Taib B, Rodaros D, Chrétien C, Biron É et al (2019) The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J Clin Invest 130:2417–2430. https://doi.org/10.1172/JCI123454

    Article  Google Scholar 

  50. Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 33:3624–3632. https://doi.org/10.1523/JNEUROSCI.2742-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443:709–712. https://doi.org/10.1038/nature05162

    Article  CAS  PubMed  Google Scholar 

  52. Bonnet MS, Pecchi E, Trouslard J, Jean A, Dallaporta M, Troadec JD (2009) Central nesfatin-1-expressing neurons are sensitive to peripheral inflammatory stimulus. J. Neuroinflammation 6:27. https://doi.org/10.1186/1742-2094-6-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu H, Ohsaki A, Oh-I S, Okada S, Mori M (2009) A new anorexigenic protein, nesfatin-1. Peptides 30:995–998. https://doi.org/10.1016/j.peptides.2009.01.002

  54. Katsurada K, Maejima Y, Nakata M, Kodaira M, Suyama S, Iwasaki Y, Kario K, Yada T (2014) Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons. Biochem Biophys Res Commun 451:276–281. https://doi.org/10.1016/j.bbrc.2014.07.116

    Article  CAS  PubMed  Google Scholar 

  55. Yettefti K, Orsini JC, el Ouazzani T, Himmi T, Boyer A, Perrin J (1995) Sensitivity of nucleus tractus solitarius neurons to induced moderate hyperglycemia, with special reference to catecholaminergic regions. J Auton Nerv Syst 51:191–197. https://doi.org/10.1016/0165-1838(94)00130-c

  56. Gandolfo P, Patte C, Leprince J, Thoumas J-L, Vaudry H, Tonon M-C (1997) The stimulatory effect of the octadecaneuropeptide (ODN) on cytosolic Ca2+ in rat astrocytes is not mediated through classical benzodiazepine receptors. Eur J Pharmacol 322:275–281. https://doi.org/10.1016/s0014-2999(97)00012-5

    Article  CAS  PubMed  Google Scholar 

  57. Lamacz M, Tonon MC, Smih-Rouet F, Patte C, Gasque P, Fontaine M, Vaudry H (1996) The endogenous benzodiazepine receptor ligand ODN increases cytosolic calcium in cultured rat astrocytes. Mol Brain Res 37:290–296. https://doi.org/10.1016/0169-328x(95)00330-u

  58. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ et al (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 421:856–859. https://doi.org/10.1038/nature01388

    Article  CAS  PubMed  Google Scholar 

  59. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu XY (2004) Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci U S A 101:4661–4666. https://doi.org/10.1073/pnas.0303992101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lanfray D, Caron A, Roy MC, Laplante M, Morin F, Leprince J, Tonon MC, Richard D (2016) Involvement of the acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. Elife. 5:e11742. https://doi.org/10.7554/eLife.11742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556. https://doi.org/10.1146/annurev.physiol.70.113006.100707

    Article  CAS  PubMed  Google Scholar 

  62. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL et al (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161. https://doi.org/10.1016/s0140-6736(96)03173-x

  63. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest 105:1827–1832. https://doi.org/10.1016/s0140-6736(96)03173-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593. https://doi.org/10.1038/nm0596-589

  65. Hamdi Y, Kaddour H, Vaudry D, Bahdoudi S, Douiri S, Leprince J, Castel H, Vaudry H et al (2012) The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism. PLoS One 7:e42498. https://doi.org/10.1371/journal.pone.0042498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maniscalco JW, Rinaman L (2014) Systemic leptin dose-dependently increases STAT3 phosphorylation within hypothalamic and hindbrain nuclei. Am J Phys 306:R576–R585. https://doi.org/10.1152/ajpregu.00017.2014

    Article  CAS  Google Scholar 

  67. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Reombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 269:546–549. https://doi.org/10.1126/science.7624778

    Article  CAS  PubMed  Google Scholar 

  68. Balland E, Cowley MA (2015) New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol 39:59–65. https://doi.org/10.1016/j.yfrne.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  69. Baskin DG, Seeley RJ, Kuijper JL, Lok S, Weigle D, Erickson JC, Palmiter RD, Schwartz MW (1998) Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes. 47:538–543. https://doi.org/10.2337/diabetes.47.4.538

    Article  CAS  PubMed  Google Scholar 

  70. Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D'Alessio DA, Perez-Tilve D (2015) Diet-induced obese mice retain endogenous leptin action. Cell Metab 21:877–882. https://doi.org/10.1016/j.cmet.2015.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Knight ZA, Hannan KS, Greenberg ML, Friedman JM (2010) Hyperleptinemia is required for the development of leptin resistance. PLoS One 5:e11376. https://doi.org/10.1371/journal.pone.0011376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funding obtained from the Aix-Marseille Université, the Institut National de la Recherche Agronomique (INRA), the Institut National de la Santé et de la Recherche Médicale (Inserm), the Agence Nationale de la Recherche grant Glioshuttle4Metabolim (ANR-15-CE14-0025 to VP), and EZICROM (ANR-16-CE14-0011 to JL, VP, and JDT). The authors acknowledge Dr. S. Rasika for the editing of the manuscript and Coraline Airault, Catherine Tardivel, and Elise Courvoisier for their support in qPCR experiments (plateforme Analyse et Valorisation de la Biodiversité, Marseille). We also thank the Centre Pluridisciplinaire de Microscopie Electronique et de Microanalyse (CP2M, Aix-Marseille Université) for the access to their confocal microscopy equipment.

Author information

Authors and Affiliations

Authors

Contributions

FG, MD, MD, CP, GR, KP, SR, DL, SG, MD, and JL performed the experiments. JL contributed to the ODN and OP synthesis. FG, FM, AJ, MCT, SG, BL, MD, JL, VP, and JDT designed the study and analyzed the data. BL, JL, VP, and JDT wrote the manuscript.

Corresponding authors

Correspondence to Jérôme Leprince, Vincent Prevot or Jean-Denis Troadec.

Ethics declarations

Conflict of Interest

FG is a fellow of the Nestlé France Foundation. CP is affiliated with Biomeostasis CRO. The other authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Intracerebral administration of endozepines enhances satiety and induces STAT3 phosphorylation in the hypothalamus and brainstem.

• The anorexigenic action of endozepines requires a fully operative leptin signaling pathway.

• Endozepines reverse a diet-induced obese phenotype by reducing food intake.

• Leptin receptor expression into tanycytes is required for endozepine-induced STAT3 phosphorylation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillebaud, F., Duquenne, M., Djelloul, M. et al. Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Mol Neurobiol 57, 3307–3333 (2020). https://doi.org/10.1007/s12035-020-01944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01944-z

Keywords

Navigation