Skip to main content

Advertisement

Log in

Upregulation of AMPK Ameliorates Alzheimer’s Disease-Like Tau Pathology and Memory Impairment

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The studies have shown that 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is involved in Alzheimer’s disease (AD) pathology, but the effects of AMPK on AD-like Tau abnormal phosphorylation and its underlying mechanism remains unclear. Herein, we found that the mRNA expression and activity of AMPK are significantly decreased in the brains of the aging C57 mice and 3 × Tg AD mice when compared with their respective control. Moreover, when downregulation of AMPK with AAV-siAMPK-eGFP in the hippocampus CA3 of 3-month-old C57 mice, the mice display AD-like Tau hyperphosphorylation, fear memory impairment, and glycogen synthase kinase-3β (GSK3β) activity increased. On the other hand, there are also AD-like Tau hyperphosphorylation, impairment of fear memory, and AMPK activity decreased in streptozotocin (STZ) mice. Interestingly, AMPK overexpression could efficiently rescue AD-like Tau phosphorylation and brain impairment in STZ mice. Moreover, the activity of GSK3β and the level of Tau phosphorylation (Ser396 and Thr231 sites) were significantly decreased in HEK293 Tau cells transfected by AMPK plasmid or treated with agonists salicylate (SS), but GSK3β agonists Wortmannin (Wort) could ablate AMPK-mediated Tau dephosphorylation. Taken together, the study indicated that AMPK reduces Tau phosphorylation and improves brain function and inhibits GSK3β in AD-like model. These findings proved that AMPK might be a new target for AD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haque RU, Levey AI (2019) Alzheimer's disease: a clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci U S A 116(52):26224–26229. https://doi.org/10.1073/pnas.1912954116

    Article  CAS  PubMed Central  Google Scholar 

  2. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W et al (2018) NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement 14(4):535–562. https://doi.org/10.1016/j.jalz.2018.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  3. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969. https://doi.org/10.1097/NEN.0b013e318232a379

    Article  CAS  PubMed  Google Scholar 

  5. Jack CR Jr, Wiste HJ, Therneau TM, Weigand SD, Knopman DS, Mielke MM, Lowe VJ, Vemuri P et al (2019) Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. JAMA 321(23):2316–2325. https://doi.org/10.1001/jama.2019.7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J Neuropathol Exp Neurol 71(5):362–381. https://doi.org/10.1097/NEN.0b013e31825018f7

    Article  PubMed  Google Scholar 

  7. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem Int 58(4):458–471. https://doi.org/10.1016/j.neuint.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  8. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15(3):112–119. https://doi.org/10.1016/j.molmed.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Dolan PJ, Johnson GVW (2010) The role of tau kinases in Alzheimer's disease. Curr Opin Drug Discov Dev 13(5):595–603

    CAS  Google Scholar 

  10. Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L et al (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant. J Neurosci 31(7):2511–2525. https://doi.org/10.1523/JNEUROSCI.5245-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hardie DG, Ross FA, Hawley SA (2012) AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. https://doi.org/10.1038/nrm3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28. https://doi.org/10.1186/1475-4924-2-28

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2(1):9–19. https://doi.org/10.1016/j.cmet.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  14. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2017) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer's disease neuropathological deficits. Mol Psychiatry 22(3):407–416. https://doi.org/10.1038/mp.2016.23

    Article  CAS  PubMed  Google Scholar 

  15. Won J-S, Im Y-B, Kim J, Singh AK, Singh I (2010) Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem Biophys Res Commun 399(4):487–491. https://doi.org/10.1016/j.bbrc.2010.07.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 285(12):9100–9113. https://doi.org/10.1074/jbc.M109.060061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thornton C, Bright Nicola J, Sastre M, Muckett Phillip J, Carling D (2011) AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 434(3):503

    Article  CAS  PubMed  Google Scholar 

  18. Vingtdeux V, Davies P, Dickson DW, Marambaud P (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121(3):337–349. https://doi.org/10.1007/s00401-010-0759-x

    Article  CAS  PubMed  Google Scholar 

  19. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun 380(1):98–104. https://doi.org/10.1016/j.bbrc.2009.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen JL, Luo C, Pu D, Zhang GQ, Zhao YX, Sun Y, Zhao KX, Liao ZY et al (2019) Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp Neurol 311:44–56. https://doi.org/10.1016/j.expneurol.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  21. Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K et al (2015) AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis 43(3):775–784. https://doi.org/10.3233/JAD-140564

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Liu B-J, Cao Y, Xu W-Q, Sun D-S, Li M-Z, Shi F-X, Li M et al (2018) Deletion of Type-2 cannabinoid receptor induces Alzheimer’s disease-like tau pathology and memory impairment through AMPK/GSK3β pathway. Mol Neurobiol 55(6):4731–4744. https://doi.org/10.1007/s12035-017-0676-2

    Article  CAS  PubMed  Google Scholar 

  23. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 39(3):409–421. https://doi.org/10.1016/S0896-6273(03)00434-3

    Article  CAS  PubMed  Google Scholar 

  24. Elahi M, Hasan Z, Motoi Y, Matsumoto SE, Ishiguro K, Hattori N (2016) Region-specific vulnerability to oxidative stress, neuroinflammation, and tau hyperphosphorylation in experimental diabetes mellitus mice. J Alzheimers Dis 51(4):1209–1224. https://doi.org/10.3233/JAD-150820

    Article  CAS  PubMed  Google Scholar 

  25. Kass MD, Rosenthal MC, Pottackal J, McGann JP (2013) Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342(6164):1389–1392. https://doi.org/10.1126/science.1244916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sengoku R (2020) Aging and Alzheimer's disease pathology. Neuropathology 40(1):22–29. https://doi.org/10.1111/neup.12626

    Article  PubMed  Google Scholar 

  27. 2019 Alzheimer's disease facts and figures (2019) Alzheimer's & Dementia 15(3):321–387. https://doi.org/10.1016/j.jalz.2019.01.010

  28. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887. https://doi.org/10.1074/jbc.271.44.27879

    Article  CAS  PubMed  Google Scholar 

  29. Clark JK, Furgerson M, Crystal JD, Fechheimer M, Furukawa R, Wagner JJ (2015) Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice. Neurobiol Learn Mem 125:152–162. https://doi.org/10.1016/j.nlm.2015.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z (2015) Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 14(4):659–668. https://doi.org/10.1111/acel.12345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF, Villers A, Irvine EE et al (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A 108(45):18471–18475. https://doi.org/10.1073/pnas.1109680108

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sureda A, Daglia M, Arguelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P et al (2020) Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 151:104582. https://doi.org/10.1016/j.phrs.2019.104582

    Article  CAS  PubMed  Google Scholar 

  33. Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer's disease. Front Biosci (Elite Ed) 5:167–177. https://doi.org/10.2741/e605

    Article  Google Scholar 

  34. Shieh JC-C, Huang P-T, Lin Y-F (2020) Alzheimer’s disease and diabetes: insulin signaling as the bridge linking two pathologies. Mol Neurobiol. https://doi.org/10.1007/s12035-019-01858-5

  35. Muraoka H, Hasegawa K, Sakamaki Y, Minakuchi H, Kawaguchi T, Yasuda I, Kanda T, Tokuyama H et al (2019) Role of Nampt-Sirt6 Axis in renal proximal tubules in extracellular matrix deposition in diabetic nephropathy. Cell Rep 27(1):199–212 e195. https://doi.org/10.1016/j.celrep.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  36. Parashar A, Mehta V, Malairaman U (2018) Type 2 diabetes mellitus is associated with social recognition memory deficit and altered dopaminergic neurotransmission in the amygdala. Ann Neurosci 24(4):212–220. https://doi.org/10.1159/000479637

    Article  PubMed  Google Scholar 

  37. Joshi T, Singh AK, Haratipour P, Sah AN, Pandey AK, Naseri R, Juyal V, Farzaei MH (2019) Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J Cell Physiol 234(10):17212–17231. https://doi.org/10.1002/jcp.28528

    Article  CAS  PubMed  Google Scholar 

  38. Luping Y, Yijing J, Lihong S, Dongling Z, Yuxi L, Juan L, Rongjiang J (2020) AMPK: Potential therapeutic target for Alzheimer's disease. Curr Protein Pept Sci 21(1):66–77. https://doi.org/10.2174/1389203720666190819142746

    Article  CAS  Google Scholar 

  39. Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D (2011) AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 434:503–512

    Article  CAS  PubMed  Google Scholar 

  40. Köhler C, Dinekov M, Götz J (2013) Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 34(5):1369–1379. https://doi.org/10.1016/j.neurobiolaging.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  41. Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281(35):25457–25465. https://doi.org/10.1074/jbc.M603469200

    Article  CAS  PubMed  Google Scholar 

  42. Horike N, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Kamata H, Nishiyama K, Uchijima Y et al (2008) AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver. J Biol Chem 283(49):33902–33910. https://doi.org/10.1074/jbc.M802537200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao M, Fang J, Wang X, Wang Y, Duan K, Ye F, Ouyang W, Tong J (2018) Activation of AMP-activated protein kinase (AMPK) aggravated postoperative cognitive dysfunction and pathogenesis in aged rats. Brain Res 1684:21–29. https://doi.org/10.1016/j.brainres.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  44. Mao S, Fu G, Seese RR, Wang Z-Y (2013) Estimation of PMI depends on the changes in ATP and its degradation products. Legal Med 15(5):235–238. https://doi.org/10.1016/j.legalmed.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  45. Liu G, Kuang S, Cao R, Wang J, Peng Q, Sun C (2019) Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR-SREBP1 signaling pathway. FASEB J 33(9):10089–10103. https://doi.org/10.1096/fj.201802619RR

    Article  CAS  PubMed  Google Scholar 

  46. Domise M, Didier S, Marinangeli C, Zhao H, Chandakkar P, Buée L, Viollet B, Davies P et al (2016) AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep 6:26758. https://doi.org/10.1038/srep26758 https://www.nature.com/articles/srep26758#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park Y-J, Ko JW, Jang Y, Kwon YH (2013) Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 38(8):1561–1571. https://doi.org/10.1007/s11064-013-1057-5

    Article  CAS  PubMed  Google Scholar 

  48. Greco SJ, Hamzelou A, Johnston JM, Smith MA, Ashford JW, Tezapsidis N (2011) Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons. Biochem Biophys Res Commun 414(1):170–174. https://doi.org/10.1016/j.bbrc.2011.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741

    Article  CAS  PubMed  Google Scholar 

  50. Rosenberg A, Ngandu T, Rusanen M, Antikainen R, Bäckman L, Havulinna S, Hänninen T, Laatikainen T et al (2018) Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial. Alzheimers Dement 14(3):263–270. https://doi.org/10.1016/j.jalz.2017.09.006

    Article  PubMed  Google Scholar 

  51. Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ (2018) Diabetes and Alzheimer's disease: mechanisms and nutritional aspects. Clin Nutr Res 7(4):229–240. https://doi.org/10.7762/cnr.2018.7.4.229

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu K, Paterson AJ, Chin E, Kudlow JE (2000) Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: Linkage of O-linked GlcNAc to beta cell death. Proc Natl Acad Sci U S A 97(6):2820–2825. https://doi.org/10.1073/pnas.97.6.2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin administration ameliorates Streptozotocin (ICV)-induced insulin receptor dysfunction, Neuroinflammation, Amyloidogenesis, and memory impairment in rats. Mol Neurobiol 54(8):6507–6522. https://doi.org/10.1007/s12035-016-0169-8

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Ding R, Wang S, Ren Z, Xu L, Zhang X, Zhao J, Ding Y et al (2018) Effect of intraperitoneal or intracerebroventricular injection of streptozotocin on learning and memory in mice. Exp Ther Med 16(3):2375–2380. https://doi.org/10.3892/etm.2018.6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW, Cheng KK, Yeung PK, Zhou LL et al (2016) Chronic adiponectin deficiency leads to Alzheimer's disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 11(1):71. https://doi.org/10.1186/s13024-016-0136-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sung DJ, Noh YH, Lee JH, Jin M, Kim JS, Han SD (2020) Diet control to achieve euglycaemia induces tau hyperphosphorylation via AMPK activation in the hippocampus of diabetic rats. Food Funct 11(1):339–346. https://doi.org/10.1039/c9fo00709a

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Huang NQ, Yan F, Jin H, Zhou SY, Shi JS, Jin F (2018) Diabetes mellitus and Alzheimer's disease: GSK-3beta as a potential link. Behav Brain Res 339:57–65. https://doi.org/10.1016/j.bbr.2017.11.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Nature Scientific Foundation of China (81671262, 81901105) and Natural Science Foundation of Anhui province (1908085QH357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Wen Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, N., Shi, FX. et al. Upregulation of AMPK Ameliorates Alzheimer’s Disease-Like Tau Pathology and Memory Impairment. Mol Neurobiol 57, 3349–3361 (2020). https://doi.org/10.1007/s12035-020-01955-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01955-w

Keywords

Navigation