Skip to main content

Advertisement

Log in

Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277:58–67

    CAS  PubMed  Google Scholar 

  2. McDonnell GV, Hawkins SA (1996) Primary progressive multiple sclerosis: a distinct syndrome? Mult Scler J 2(3):137–141

    CAS  Google Scholar 

  3. Thompson AJ et al (1997) Primary progressive multiple sclerosis. Brain 120(6):1085–1096

    PubMed  Google Scholar 

  4. Duquette P, Pleines J, Girard M, Charest L, Senecal-Quevillon M, Masse C (2015) The increased susceptibility of women to multiple sclerosis. Can J Neurol Sci 19(4):466–471

  5. Stadelmann C, Wegner C, Bruck W (2011) Inflammation, demyelination, and degeneration—recent insights from MS pathology. Biochim Biophys Acta 1812(2):275–282

    CAS  PubMed  Google Scholar 

  6. Campbell IL, Hofer MJ, Pagenstecher A (2010) Transgenic models for cytokine-induced neurological disease. Biochim Biophys Acta 1802(10):903–917

    CAS  PubMed  Google Scholar 

  7. Zimmermann J, Emrich M, Krauthausen M, Saxe S, Nitsch L, Heneka MT, Campbell IL, Müller M (2018) IL-17A promotes granulocyte infiltration, myelin loss, microglia activation, and behavioral deficits during Cuprizone-induced demyelination. Mol Neurobiol 55(2):946–957

    CAS  PubMed  Google Scholar 

  8. Qian Y, Kang Z, Liu C, Li X (2010) IL-17 signaling in host defense and inflammatory diseases. Cell Mol Immunol 7(5):328–333

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang SH, Park H, Dong C (2006) Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem 281(47):35603–35607

    CAS  PubMed  Google Scholar 

  10. Sriram S (2011) Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 239(1–2):13–20

    CAS  PubMed  Google Scholar 

  11. Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HWGM (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60(2):306–321

    PubMed  Google Scholar 

  12. Prajeeth CK, Löhr K, Floess S, Zimmermann J, Ulrich R, Gudi V, Beineke A, Baumgärtner W et al (2014) Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain Behav Immun 37:248–259

    CAS  PubMed  Google Scholar 

  13. Das Sarma J et al (2009) Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 6:14–14

    PubMed  Google Scholar 

  14. Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H (2000) The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 107(2):161–166

    CAS  PubMed  Google Scholar 

  15. Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin LM (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203(4):1007–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shiryaev SA, Savinov AY, Cieplak P, Ratnikov BI, Motamedchaboki K, Smith JW, Strongin AY (2009) Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. PLoS One 4(3):e4952

    PubMed  PubMed Central  Google Scholar 

  17. Skuljec J et al (2011) Matrix metalloproteinases and their tissue inhibitors in cuprizone-induced demyelination and remyelination of brain white and gray matter. J Neuropathol Exp Neurol 70(9):758–769

    CAS  PubMed  Google Scholar 

  18. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651–a001651

    PubMed  PubMed Central  Google Scholar 

  19. Chou YC, Sheu JR, Chung CL, Chen CY, Lin FL, Hsu MJ, Kuo YH, Hsiao G (2010) Nuclear-targeted inhibition of NF-kappaB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. Chem Biol Interact 184(3):403–412

    CAS  PubMed  Google Scholar 

  20. Sui RX, Miao Q, Wang J, Wang Q, Song LJ, Yu JW, Cao L, Xiao W et al (2019) Protective and therapeutic role of Bilobalide in cuprizone-induced demyelination. Int Immunopharmacol 66:69–81

    CAS  PubMed  Google Scholar 

  21. DeLuca GC, Yates RL, Beale H, Morrow SA (2015) Cognitive impairment in multiple sclerosis: Clinical, radiologic and pathologic insights. Brain Pathol 25(1):79–98

    PubMed  Google Scholar 

  22. Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smestad C, Sandvik L, Landrø NI, Celius EG (2010) Cognitive impairment after three decades of multiple sclerosis. Eur J Neurol 17(3):499–505

    CAS  PubMed  Google Scholar 

  24. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60(1):12–21

    CAS  PubMed  Google Scholar 

  25. Stys PK, Zamponi GW, van Minnen J, Geurts JJG (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13(7):507–514

    CAS  PubMed  Google Scholar 

  26. Keough MB, Jensen SK, Yong VW (2015) Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. J Vis Exp 97:52679. https://doi.org/10.3791/52679

  27. Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: New insights into an old story. Acta Neuropathol 118(6):723–736

    PubMed  Google Scholar 

  28. Torkildsen O, Brunborg LA, Myhr KM, Bø L (2008) The cuprizone model for demyelination. Acta Neurol Scand Suppl 188:72–76

    CAS  PubMed  Google Scholar 

  29. Acs P, Kalman B (2012) Pathogenesis of multiple sclerosis: what can we learn from the cuprizone model. Methods Mol Biol 900:403–431

    CAS  PubMed  Google Scholar 

  30. Trenova AG, Slavov GS, Manova MG, Aksentieva JB, Miteva LD, Stanilova SA (2016) Cognitive impairment in multiple sclerosis. Folia Med (Plovdiv) 58(3):157–163

    Google Scholar 

  31. Vakilzadeh G, Khodagholi F, Ghadiri T, Ghaemi A, Noorbakhsh F, Sharifzadeh M, Gorji A (2016) The effect of melatonin on behavioral, molecular, and histopathological changes in Cuprizone model of demyelination. Mol Neurobiol 53(7):4675–4684

    CAS  PubMed  Google Scholar 

  32. FDA, Novel Drug Approvals for 2015. 2015.

  33. Fala L (2016) Cosentyx (Secukinumab): first IL-17A antagonist receives FDA approval for moderate-to-severe plaque psoriasis. Am Health Drug Benefits 9(Spec Feature):60–63

    PubMed  PubMed Central  Google Scholar 

  34. Khodanovich MY, Sorokina IV, Glazacheva VY, Akulov AE, Nemirovich-Danchenko NM, Romashchenko AV, Tolstikova TG, Mustafina LR et al (2017) Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Sci Rep 7:46686

    PubMed  PubMed Central  Google Scholar 

  35. Llufriu-Daben G et al (2018) Targeting demyelination via alpha-secretases promoting sAPPalpha release to enhance remyelination in central nervous system. Neurobiol Dis 109(Pt A):11–24

    CAS  PubMed  Google Scholar 

  36. Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O (2019) Five decades of Cuprizone, an updated model to replicate demyelinating diseases. Curr Neuropharmacol 17(2):129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cunha JM, Masur J (1978) Evaluation of psychotropic drugs with a modified open field test. Pharmacology 16(5):259–267

    CAS  PubMed  Google Scholar 

  38. Volosin M, Cancela L, Molina V (1988) Influence of adrenocorticotrophic hormone on the behaviour in the swim test of rats treated chronically with desipramine. J Pharm Pharmacol 40(1):74–76

    CAS  PubMed  Google Scholar 

  39. Zbinden G (1981) Experimental methods in behavioral teratology. Arch Toxicol 48(2):69–88

    CAS  PubMed  Google Scholar 

  40. Shalaby YM, Menze ET, Azab SS, Awad AS (2019) Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross talk between nephrotoxicity and neurotoxicity. Arch Toxicol 93(5):1417–1431. https://doi.org/10.1007/s00204-019-02429-2

  41. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Churchill Livingstone, London

    Google Scholar 

  42. Carleton HM (1980) In: Drury RAB, Wallington EA (eds) Carleton’s histological technique. Oxford University Press, Oxford, New York

    Google Scholar 

  43. Podbielska M, Banik N, Kurowska E, Hogan E (2013) Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 3(3):1282–1324

    PubMed  PubMed Central  Google Scholar 

  44. van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 26(1):2–10

    PubMed  Google Scholar 

  45. Bjelobaba I, Savic D, Lavrnja I (2017) Multiple sclerosis and neuroinflammation: the overview of current and prospective therapies. Curr Pharm Des 23(5):693–730

    CAS  PubMed  Google Scholar 

  46. Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M (2017) Multiple sclerosis: therapeutic applications of advancing drug delivery systems. Biomed Pharmacother 86:343–353

    CAS  PubMed  Google Scholar 

  47. Praet J, Guglielmetti C, Berneman Z, van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    CAS  PubMed  Google Scholar 

  48. Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32(2):279–292

    CAS  PubMed  Google Scholar 

  49. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JPY (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4(11):1116–1122

    CAS  PubMed  Google Scholar 

  50. de Paula Faria D, de Vries EFJ, Sijbesma JWA, Buchpiguel CA, Dierckx RAJO, Copray SCVM (2014) PET imaging of glucose metabolism, neuroinflammation and demyelination in the lysolecithin rat model for multiple sclerosis. Mult Scler 20(11):1443–1452

    PubMed  Google Scholar 

  51. Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013:948976

    PubMed  PubMed Central  Google Scholar 

  52. Bando Y, Takakusaki K, Ito S, Terayama R, Kashiwayanagi M, Yoshida S (2008) Differential changes in axonal conduction following CNS demyelination in two mouse models. Eur J Neurosci 28(9):1731–1742

    PubMed  Google Scholar 

  53. Omotoso GO, Olajide OJ, Gbadamosi IT, Adebayo JO, Enaibe BU, Akinola OB, Owoyele BV (2019) Cuprizone toxicity and Garcinia kola biflavonoid complex activity on hippocampal morphology and neurobehaviour. Heliyon 5(7):e02102

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu H, Wu M, Lu G, Cao T, Chen N, Zhang Y, Jiang Z, Fan H et al (2018) Prednisone alleviates demyelination through regulation of the NLRP3 inflammasome in a C57BL/6 mouse model of cuprizone-induced demyelination. Brain Res 1678:75–84

    CAS  PubMed  Google Scholar 

  55. Yu Q, Hui R, Park J, Huang Y, Kusnecov AW, Dreyfus CF, Zhou R (2017) Strain differences in cuprizone induced demyelination. Cell Biosci 7:59

    PubMed  PubMed Central  Google Scholar 

  56. Ohgomori T, Jinno S (2019) Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol Appl Pharmacol 363:98–110

    CAS  PubMed  Google Scholar 

  57. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in toll-like receptor-mediated neuronal injury. Glia 58(3):253–263

    PubMed  Google Scholar 

  59. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    CAS  Google Scholar 

  60. Ugarte-Berzal E, Berghmans N, Boon L, et al (2018) Gelatinase B/matrix metalloproteinase-9 is a phase-specific effector molecule, independent from Fas, in experimental autoimmune encephalomyelitis. PLoS One 13(10):e0197944. https://doi.org/10.1371/journal.pone.0197944

  61. Romi F, Helgeland G, Gilhus NE (2012) Serum levels of matrix metalloproteinases: implications in clinical neurology. Eur Neurol 67(2):121–128

    CAS  PubMed  Google Scholar 

  62. Castier Y, Ramkhelawon B, Riou S, Tedgui A, Lehoux S (2009) Role of NF-kappaB in flow-induced vascular remodeling. Antioxid Redox Signal 11(7):1641–1649

    CAS  PubMed  Google Scholar 

  63. Trentini A et al (2016) Interplay between matrix metalloproteinase-9, matrix metalloproteinase-2, and interleukins in multiple sclerosis patients. Dis Markers 2016:3672353–3672353

    PubMed  PubMed Central  Google Scholar 

  64. Benesova Y et al (2009) Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler 15(3):316–322

    CAS  PubMed  Google Scholar 

  65. Liuzzi GM, Trojano M, Fanelli M, Avolio C, Fasano A, Livrea P, Riccio P (2002) Intrathecal synthesis of matrix metalloproteinase-9 in patients with multiple sclerosis: implication for pathogenesis. Mult Scler J 8(3):222–228

    CAS  Google Scholar 

  66. Behrangi N, Namvar N, Ataei M, Dizaji S, Javdani G, Sanati MH (2017) MMP9 gene expression variation by ingesting tart cherry and P-Coumaric acid during remyelination in the cuprizone mouse model. Acta Med Iran 55(9):539–549

    PubMed  Google Scholar 

  67. Nunes AK et al (2016) Phosphodiesterase-5 inhibition promotes remyelination by MCP-1/CCR-2 and MMP-9 regulation in a cuprizone-induced demyelination model. Exp Neurol 275(Pt 1):143–153

    CAS  PubMed  Google Scholar 

  68. Pouly S, Becher B, Blain M, Antel JP (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59(4):280–286

    CAS  PubMed  Google Scholar 

  69. Lin W, Harding HP, Ron D, Popko B (2005) Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol 169(4):603–612

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37(7):1097–1102

    CAS  PubMed  Google Scholar 

  71. Skurkovich S et al (2001) Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. Mult Scler 7(5):277–284

    CAS  PubMed  Google Scholar 

  72. Ottum PA et al (2015) Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front Immunol 6:539

    PubMed  PubMed Central  Google Scholar 

  73. Tan L et al (1998) Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 160(9):4271–4279

    CAS  PubMed  Google Scholar 

  74. Rosenman SJ et al (1995) Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J Immunol 154(4):1888–1899

    CAS  PubMed  Google Scholar 

  75. Salmaggi A, Gelati M, Dufour A, Corsini E, Pagano S, Baccalini R, Ferrero E, Scabini S et al (2002) Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J Interf Cytokine Res 22(6):631–640

    CAS  Google Scholar 

  76. Ding X et al (2015) Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity. J Immunol (Baltimore, Md : 1950) 194(9):4251–4264

    CAS  Google Scholar 

  77. Kang Z, Liu L, Spangler R, Spear C, Wang C, Gulen MF, Veenstra M, Ouyang W et al (2012) IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. J Neurosci 32(24):8284–8292

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, Liu L, Qian W et al (2010) Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32(3):414–425

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Veto S, Acs P, Bauer J, Lassmann H, Berente Z, Setalo G, Borgulya G, Sumegi B et al (2010) Inhibiting poly (ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133(Pt 3):822–834

    PubMed  PubMed Central  Google Scholar 

  80. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2(10):2557–2568

    CAS  Google Scholar 

  81. Barañano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci 98(20):10996–11002

    PubMed  Google Scholar 

  82. Alam J, Igarashi K, Immenschuh S, Shibahara S, Tyrrell RM (2004) Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the international conference (Uppsala, 2003) on Heme Oxygenase. Antioxid Redox Signal 6(5):924–933

    CAS  PubMed  Google Scholar 

  83. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Q, Li Z, Wu S, Li X, Sang Y, Li J, Niu Y, Ding H (2016) Myricetin alleviates cuprizone-induced behavioral dysfunction and demyelination in mice by Nrf2 pathway. Food Funct 7(10):4332–4342

    CAS  PubMed  Google Scholar 

  85. Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA et al (2007) Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 117(2):438–447

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen SJ, Wang YL, Lo WT, Wu CC, Hsieh CW, Huang CF, Lan YH, Wang CC et al (2010) Erythropoietin enhances endogenous haem oxygenase-1 and represses immune responses to ameliorate experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(2):210–223

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, Ge XL, Zhang J et al (2013) Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 250:239–249

    CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar S. Azab.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Declaration of Transparency and Scientific Rigor

This declaration acknowledges that this paper adheres to the principles for transparent reporting and scientific rigor of preclinical research recommended by publishers.

Authorship Statement

All authors have read the journal’s authorship statement and agree to it.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• SEC elicited neuroprotective effect in MS model

• SEC improved behavioral and neurobiochemical markers

• SEC produced antioxidant and anti-inflammatory effects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Maged, A.ES., Gad, A.M., Rashed, L.A. et al. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 57, 3291–3306 (2020). https://doi.org/10.1007/s12035-020-01972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01972-9

Keywords

Navigation