Skip to main content
Log in

Shrew twittering call rate is high in novel environments—a lab-study

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Shrews use several different call types for communication. In previous studies, two call types have been additionally associated with a possible function for echolocation: ultrasonic click-like emissions and sonic twittering calls. There is anecdotal evidence that the rate of shrew twittering calls is high in unfamiliar environments and lower in familiar ones. Here we quantitatively tested this assumption for the first time. In a simple laboratory experiment, we confronted three different shrew species with environments of different degrees of novelty. We could show that the twittering call rate indeed decreased with increasing familiarity with the environment. In a separate experiment, we tested if shrews would increase twittering call rate after a stressful event, which they did not. The finding of an increased call rate inside a novel environment that is not caused by stress is in line with the hypothesis of a very basic echolocation-like system in shrews, as also bats increase their echolocation call rate in novel environments. However, it is not in full agreement with the hypothesis that twittering in shrews mainly has a function for communication, as in territorial signalling, call rates are usually higher in familiar than in unfamiliar environments. Call rates did not change after a small structural alteration inside the familiar environment, suggesting that shrews use their twittering calls not for a fine-tuned echolocation like bats, but rather a coarse acoustic orientation in their surroundings (‘echo-orientation’). Certainly, echo-orientation and communication might be two parallel, non-mutually exclusive functions of shrew twittering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anjum F, Turni H, Mulder PGH, van der Burg J, Brecht M (2006) Tactile guidance of prey capture in Etruscan shrews. Proc Natl Acad Sci U S A 103:16544–16549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binz H, Zimmermann E (1989) The vocal repertoire of adult tree shrews (Tupaia Belangeri). Behaviour 109:142–162

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Branis M, Burda H (1994) Visual and hearing biology of shrews. In: Merritt JF, Kirkland GL, Rose RK (eds) Advances in the biology of shrews. Carnegie Museum for Natural History, Pittsburgh, pp 189–200

    Google Scholar 

  • Briefer EF (2012) Vocal expression of emotions in mammals: mechanisms of production and evidence. J Zool 288:1–20

    Article  Google Scholar 

  • Brinkløv S, Fenton MB, Ratcliffe JM (2013) Echolocation in oilbirds and swiftlets. Front Physiol 4(123):1–12

    Google Scholar 

  • Buchler ER (1976) Use of echolocation by wandering shrew (Sorex vagrans). Anim Behav 24:858–873

    Article  Google Scholar 

  • Catania KC (2013) Stereo and serial sniffing guide navigation to an odour source in a mammal. Nat Commun 4:1441. https://doi.org/10.1038/ncomms2444

    Article  CAS  PubMed  Google Scholar 

  • Catania KC, Hare JF, Campbell KL (2008) Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci U S A 105:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchfield S (1990) The natural history of shrews. Cornell University Press, Ithaca, New York

    Google Scholar 

  • Crowcroft P (1955) Notes on the behaviour of shrews. Behaviour 8:63–80

    Article  Google Scholar 

  • Darden SK, Dabelsteen T (2008) Acoustic territorial signalling in a small, socially monogamous canid. Anim Behav 75:905–912. https://doi.org/10.1016/j.anbehav.2007.07.010

    Article  Google Scholar 

  • Ellis JMS (2008) Which call parameters signal threat to conspecifics in white-throated magpie-jay mobbing calls? Ethology 114:154–163. https://doi.org/10.1111/j.1439-0310.2007.01439.x

    Article  Google Scholar 

  • Forsman KA, Malmquist MG (1988) Evidence for echolocation in the common shrew, Sorex araneus. J Zool 216:655–662

    Article  Google Scholar 

  • Gibson RM (1996) Female choice in sage grouse: the roles of attraction and active comparison. Behav Ecol Sociobiol 39:55–59

    Article  Google Scholar 

  • Gillam EH (2007) Eavesdropping by bats on the feeding buzzes of conspecifics. Can J Zool 85:795–801. https://doi.org/10.1139/Z07-060

    Article  Google Scholar 

  • Goerlitz HR, Greif S, Siemers BM (2008) Cues for acoustic detection of prey: insect rustling sounds and the influence of walking substrate. J Exp Biol 211:2799–2806. https://doi.org/10.1242/jeb.019596

    Article  PubMed  Google Scholar 

  • Gottlander K (1987) Variation in the song rate of the male pied flycatcher Ficedula hypoleuca-causes and consequences. Anim Behav 35:1037–1043

    Article  Google Scholar 

  • Gould E (1969) Communication in three genera of shrews (Soricidae): Suncus, Blarina, & Cryptotis. Commun Behav Biol Part A 3:11–31

    Google Scholar 

  • Gould E, Novick A, Negus NC (1964) Evidence for echolocation in shrews. J Exp Zool 156:19–37

    Article  CAS  PubMed  Google Scholar 

  • Graham IM, Redpath SM, Thirgood SJ (1995) The diet and breeding density of common buzzards Buteo buteo in relation to indices of prey abundance. Bird Study 42:165–173

    Article  Google Scholar 

  • Greenfield MD, Minckley RL (1993) Acoustic dueling in tarbush grasshoppers-settlement of territorial contests via alternation of reliable signals. Ethology 95:309–326

    Article  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven

    Google Scholar 

  • Grünwald A (1969) Investigation on orientation in white-tooth-shrews (Soricidae-Crocidurinae). Z Vgl Physiol 65:191–217

    Article  Google Scholar 

  • Gursky S (2019) Echolocation in a nocturnal primate? Folia Primatol (Basel) 90:379–391. https://doi.org/10.1159/000497811

    Article  Google Scholar 

  • Holling CS (1958) Sensory stimuli involved in the location and selection of sawfly cocoons by small mammals. Can J Zool 36:633–653

    Article  Google Scholar 

  • Howard E (1920) Territory in bird life. Collins, London

    Book  Google Scholar 

  • Irwin DW, Baxter RM (1980) Evidence against the use of echolocation by Crocidura f. flavescens (Soricidae). Säugetierkd Mitteilungen 28:323

    Google Scholar 

  • Jones G, Siemers BM (2011) The communicative potential of bat echolocation pulses. J Comp Physiol A 197:447–457. https://doi.org/10.1007/s00359-010-0565-x

    Article  Google Scholar 

  • Konstantinov AI, Movchan VN (1985) Acoustic communication in different groups of mammals (in Russian). In: Sounds in the life of animals (in Russian). Leningrad, pp 63–81

    Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behav Ecol Sociobiol 2:271–290

    Article  Google Scholar 

  • Maust-Mohl M, Soltis J, Reiss D (2018) Underwater click train production by the hippopotamus (Hippopotamus amphibius) suggests an echo-ranging function. Behaviour 155:231–251. https://doi.org/10.1163/1568539X-00003484

    Article  Google Scholar 

  • Munz M, Brecht M, Wolfe J (2010) Active touch during shrew prey capture. Front Behav Neurosci 4:191. https://doi.org/10.3389/fnbeh.2010.00191

    Article  PubMed  PubMed Central  Google Scholar 

  • Naguib M, Altenkamp R, Griessmann B (2001) Nightingales in space: song and extra-territorial forays of radio tagged song birds. J Ornithol 142:306–312. https://doi.org/10.1007/BF01651369

    Article  Google Scholar 

  • Panyutina AA, Kuznetsov AN, Volodin IA et al (2017) A blind climber: the first evidence of ultrasonic echolocation in arboreal mammals. Integr Zool 12:172–184

    Article  PubMed  Google Scholar 

  • Peichl L, Kuenzle H, Vogel P (2000) Photoreceptor types and distributions in the retinae of insectivores. Vis Neurosci 17:937–948

    Article  CAS  PubMed  Google Scholar 

  • Core Team R (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rendall D (2003) Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons. J Acoust Soc Am 113:3390–3402. https://doi.org/10.1121/1.1568942

    Article  PubMed  Google Scholar 

  • Rice CE (1967) Human echo perception. Science 155:656–664

    Article  CAS  PubMed  Google Scholar 

  • Robinson SR (1980) Antipredator behavior and predator recognition in Beldings ground-squirrels. Anim Behav 28:840–852

    Article  Google Scholar 

  • Römer H (2001) Ecological constraints for sound communication: from grasshoppers to elephants. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, Heidelberg, pp 59–77

    Chapter  Google Scholar 

  • Rychlik L (1998) Evolution of social systems in shrews. In: Wojcik JM, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Polish Academy of Sciences, Białowieża, pp 347–406

    Google Scholar 

  • Rychlik L, Jancewicz E (2002) Prey size, prey nutrition, and food handling by shrews of different body sizes. Behav Ecol 13:216–223

    Article  Google Scholar 

  • Rychlik L, Zwolak R (2005) Behavioural mechanisms of conflict avoidance among shrews. Acta Theriol 50:289–308

    Article  Google Scholar 

  • Sánchez C (2003) Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur J Pharmacol 463:133–143. https://doi.org/10.1016/S0014-2999(03)01277-9

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Ohdachi SD, Kawahara A, Echenique-Diaz LM, Maruyama S, Kawata M (2019) Acoustic emissions of Sorex unguiculatus (Mammalia: Soricidae): assessing the echo-based orientation hypothesis. Ecol Evol 2019. https://doi.org/10.1002/ece3.4930

  • Schaub A (2007) Spatial orientation in vespertilionid bats commuting on flyways. Eberhard Karls Universität Tübingen

  • Schehka S, Zimmermann E (2009) Acoustic features to arousal and identity in disturbance calls of tree shrews (Tupaia belangeri). Behav Brain Res 203:223–231. https://doi.org/10.1016/j.bbr.2009.05.007

    Article  PubMed  Google Scholar 

  • Schneiderová I (2014) Vocal repertoire ontogeny of the captive Asian house shrew Suncus murinus suggests that the male courtship call develops from the caravanning call of the young. Acta Theriol 59:149–164

    Article  Google Scholar 

  • Schneiderová I, Zouhar J (2014) Resting-associated vocalization emitted by captive Asian house shrews (Suncus murinus): acoustic structure and variability in an unusual mammalian vocalization. PLoS One 9:e111571. https://doi.org/10.1371/journal.pone.0111571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394. https://doi.org/10.1016/s0169-5347(03)00185-x

    Article  Google Scholar 

  • Seggie JA, Brown GM (1975) Stress response patterns of plasma corticosterone, prolactin, and growth hormone in the rat, following handling or exposure to novel environment. Can J Physiol Pharmacol 53:629–637. https://doi.org/10.1139/y75-087

    Article  CAS  PubMed  Google Scholar 

  • Siemers BM, Schauermann G, Turni H, von Merten S (2009) Why do shrews twitter? Communication or simple echo-based orientation. Biol Lett 5:593–596. https://doi.org/10.1098/rsbl.2009.0378

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemers BM, Schnitzler HU (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661. https://doi.org/10.1038/nature02547

    Article  CAS  PubMed  Google Scholar 

  • Sigmund L, Dandova R, Kodejsova V, Siegmund R (1989) Das Licht als Umweltfaktor im Leben der Wasserspitzmaus (Neomys fodiens). Z Säugetierk 63, Supplement 7

  • Simeonovska-Nikolova DM (2004) Vocal communication in the bicoloured white-toothed shrew Crocidura leucodon. Acta Theriol 49:157–165

    Article  Google Scholar 

  • Thaler L, Reich GM, Zhang X, Wang D, Smith GE, Tao Z, Abdullah RSABR, Cherniakov M, Baker CJ, Kish D, Antoniou M (2017) Mouth-clicks used by blind expert human echolocators-signal description and model based signal synthesis. PLoS Comput Biol 13:e1005670. https://doi.org/10.1371/journal.pcbi.1005670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler L, Vos RD, Kish D, Antoniou M, Baker C, Hornikx M (2018) Human echolocators adjust loudness and number of clicks for detection of reflectors at various azimuth angles. Proc R Soc B 285:20172735. https://doi.org/10.1098/rspb.2017.2735

    Article  PubMed  Google Scholar 

  • Thomas JA, Jalili M (2004) Review of echolocation in insectivores and rodents. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. The University of Chicago Press, Chicago, pp 547–564

    Google Scholar 

  • Thomas JA, Moss CF, Vater M (2004) Echolocation in bats and dolphins. The University of Chicago Press, Chicago and London

    Google Scholar 

  • Tomasi TE (1979) Echolocation by the short-tailed shrew Blarina brevicauda. J Mammal 60:751–759

    Article  Google Scholar 

  • Voigt-Heucke SL, Taborsky M, Dechmann DK (2010) A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Anim Behav 80:59–67

    Article  Google Scholar 

  • Volodin IA, Panyutina AA, Abramov AV et al (2019) Ultrasonic bouts of a blind climbing rodent ( Typhlomys chapensis ): acoustic analysis. Bioacoustics:1–17. https://doi.org/10.1080/09524622.2018.1509374

  • Volodin IA, Zaytseva AS, Ilchenko OG, Volodina EV (2015) Small mammals ignore common rules: a comparison of vocal repertoires and the acoustics between pup and adult piebald shrews Diplomesodon pulchellum. Ethology 121:103–115. https://doi.org/10.1111/eth.12321

    Article  Google Scholar 

  • von Merten S, Siemers BM (2012) Exploratory behaviour in shrews: fast-lived Sorex versus slow-lived Crocidura. Anim Behav 84:29–38

    Article  Google Scholar 

  • Wohlgemuth MJ, Luo J, Moss CF (2016) Three-dimensional auditory localization in the echolocating bat. Curr Opin Neurobiol 41:78–86. https://doi.org/10.1016/j.conb.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  • Yovel Y, Geva-Sagiv M, Ulanovsky N (2011) Click-based echolocation in bats: not so primitive after all. J Comp Physiol A 197:515–530

    Article  Google Scholar 

  • Zaytseva AS, Volodin IA, Mason MJ, Frey R, Fritsch G, Ilchenko OG, Volodina EV (2015) Vocal development during postnatal growth and ear morphology in a shrew that generates seismic vibrations, Diplomesodon pulchellum. Behav Process 118:130–141

    Article  Google Scholar 

  • Zsebők S, Czabán D, Farkas J et al (2015) Acoustic species identification of shrews: twittering calls for monitoring. Ecol Inform 27:1–10

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks go to Michaela Thiel for conducting experiment 2; Leonie Baier, Renate Heckel and Erich Koch for helping with data, shrews, and technics, respectively; Paweł Kardynia and Joaquim Tapisso for valuable comments on an earlier version of this manuscript; and Markus Fendt for providing the event recorder.

Funding

This study was funded by the Max Planck Society and CESAM (UID/AMB/50017/2019) through national funds by FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie von Merten.

Additional information

Communicated by: Jan M. Wójcik

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Björn M. Siemers was deceased

Electronic supplementary material

Audio S1

(WAV 2064 kb)

Audio S2

(WAV 5938 kb)

Fig. S1

(PNG 1832 kb)

High resolution image (TIF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Merten, S., Siemers, B.M. Shrew twittering call rate is high in novel environments—a lab-study. Mamm Res 65, 469–479 (2020). https://doi.org/10.1007/s13364-020-00488-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-020-00488-w

Keywords

Navigation