Skip to main content
Log in

On localized and coherent states on some new fuzzy spheres

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct various systems of coherent states (SCS) on the O(D)-equivariant fuzzy spheres \(S^d_\Lambda \) (\(d=1,2\), \(D=d+1\)) constructed in Fiore and Pisacane (J Geom Phys 132:423–451, 2018) and study their localizations in configuration space as well as angular momentum space. These localizations are best expressed through the O(D)-invariant square space and angular momentum uncertainties \((\Delta \varvec{x})^2,(\Delta \varvec{L})^2\) in the ambient Euclidean space \(\mathbb {R}^D\). We also determine general bounds (e.g., uncertainty relations from commutation relations) for \((\Delta \varvec{x})^2,(\Delta \varvec{L})^2\), and partly investigate which SCS may saturate these bounds. In particular, we determine O(D)-equivariant systems of optimally localized coherent states, which are the closest quantum states to the classical states (i.e., points) of \(S^d\). We compare the results with their analogs on commutative \(S^d\). We also show that on \(S^2_\Lambda \) our optimally localized states are better localized than those on the Madore–Hoppe fuzzy sphere with the same cutoff \(\Lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Snyder’s quantized spacetime algebra is generated by 4 Hermitian Cartesian coordinate operators \(\left\{ x^\mu \right\} _{\mu =0,1,2,3}\), and 4 Hermitian momentum operators \(\left\{ p_\mu \right\} _{\mu =0,1,2,3}\) fulfilling (here \(\alpha \) is a suitable constant)

    $$\begin{aligned}{}[p_\mu ,p_\nu ]=0, \quad [x^\mu ,p_\nu ]=i\hbar (\delta ^\mu _\nu -\alpha p^\mu p_\nu ), \quad [x^\mu ,x^\nu ]=-i\hbar \alpha L^{\mu \nu },\quad \mu ,\nu =0,1,2,3 \end{aligned}$$
    (6)

    where \(L^{\mu \nu } =x^\mu p^\nu -x^\nu p^\mu \) and \(v^\mu =\eta ^{\mu \nu }v_\nu \), with \(\eta =\text{ diag }(1,-1,-1,-1)=\eta ^{-1}\) the Minkowski metric matrix.

  2. Of course a future, more precise determination of \((\Delta \varvec{x})^2_{\mathrm{{min}}}\) will indicate an even sharper localization.

  3. The inequivalent unitary irreducible representation of \({{\mathcal {A}}}\) is parametrized by \(\alpha \in [0,2\pi [\), entering \(L\psi _n=(n+\alpha )\psi _n\).

  4. Using (16), one can obtain the weaker inequality \((\Delta \varvec{L})^2\ge |\langle \varvec{L}\rangle |\sqrt{3/4}\): (16) implies the inequalities \(2\Delta L_1^2\,\Delta L_2^2\ge \langle L_3\rangle ^2/2\), \((\Delta L_1^4+\Delta L_2^4)/2\ge \langle L_3\rangle ^2/4\) and the ones obtained permuting 1, 2, 3 cyclically; summing all of them we obtain \((\Delta \varvec{L})^4\ge \langle \varvec{L}\rangle ^2|3/4\).

  5. We have changed conventions with respect to [14]: the \(x_i\) (\(i=1,2\)) as defined here equal the \(\xi ^i=\overline{x}^i/a\) of [14] where \(a=1+\frac{9}{4}\frac{1}{\sqrt{2k}}+O\left( \frac{1}{k}\right) \) is just a normalization factor; the \(x_\pm \) as defined here equal \(\sqrt{2}\xi ^\pm =\sqrt{2}\overline{x}^\pm /a\) of [14].

  6. In fact, on the generic vector \(\varvec{\chi }=\sum \nolimits _{m=-\Lambda }^{\Lambda }{\chi _m\psi _m}\) one finds \(\left\langle L'\right\rangle _{\varvec{\chi }}=\sum \nolimits _{m=1}^{\Lambda -1}[|\chi _{-m}|^2-|\chi _{m}|^2]m/k +[|\chi _{\Lambda }|^2-|\chi _{-\Lambda }|^2][1/2+\Lambda (\Lambda -1)/2k]\), which vanishes, e.g., if \(|\chi _{-m}|=|\chi _{m}|\) for all m, and \(\langle x_1x_2+x_2x_1\rangle =\langle x_+^2-x_-^2\rangle /2i\). which vanishes if, e.g., all \(\chi _m\in \mathbb {R}\), so that \(\langle x_+^2\rangle \) is real.

  7. We have changed conventions with respect to [14]: the \(x_i,L_i\) (\(i=1,2,3\)) as defined here, respectively, equal the \(\overline{x}^i,\overline{L}_i\) of [14]; the \(x_\pm ,L_\pm \) as defined here, respectively, equal \(\sqrt{2}\overline{x}^\pm \), \(\sqrt{2}\overline{L}_\pm \) of [14].

  8. In fact, on the generic vector \(\varvec{\chi }=\sum \nolimits _{l=0}^{\Lambda }\sum \nolimits _{m=-l}^{l}{\chi _l^m\psi _l^m}\) one finds \(\left\langle L_3'\right\rangle _{\varvec{\chi }}=\sum \nolimits _{l=0}^{\Lambda -1}\sum \nolimits _{m=1}^{l}[|\chi _l^{-m}|^2-|\chi _l^{m}|^2]\frac{m}{k} +\frac{1+\frac{\Lambda ^2}{k}}{2\Lambda +1}\sum \nolimits _{m=1}^{\Lambda } [|\chi _{\Lambda }^{-m}|^2-|\chi _{\Lambda }^m|^2]\), which vanishes, e.g., if \(|\chi _l^{-m}|=|\chi _l^{m}|\) for all lm, and \(\langle x_1x_2+x_2x_1\rangle =\langle x_+^2-x_-^2\rangle /2i\), which vanishes if, e.g., all \(\chi _l^{m}\in \mathbb {R}\), so that \(\langle x_+^2\rangle \) is real.

  9. A strong SCS yields a resolution of the identity; a weak SCS is just (over)complete.

  10. The \(\psi _n\) make an orthonormal basis of the Hilbert space; in a broad (but rather unconventional) sense this basis can be considered the system of coherent states associated with the group (15), semidirect product of a Lie group times a discrete one.

References

  1. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39–44 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  2. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grosse, H., Klimcik, C., Presnajder, P.: Towards finite quantum field theory in non-commutative geometry. Int. J. Theor. Phys. 35, 231–244 (1996)

    Article  Google Scholar 

  4. Alessio, F., Arzano, M.: The fuzzy celestial sphere, arXiv:1901.01167v2

  5. Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. B (Proc. Suppl.) 18B, 29–47 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Aschieri, P., Steinacker, H., Madore, J., Manousselis, P., Zoupanos, G.: Fuzzy extra dimensions: Dimensional reduction, dynamical generation and renormalizability, SFIN A1 (2007) 25-42; and references therein

  7. Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1995)

    MATH  Google Scholar 

  8. Madore, J.: An Introduction to Noncommutative Differential Geometry and its Physical Applications. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  9. Gracia-Bondia, J.M., Figueroa, H., Varilly, J.: Elements of Non-commutative Geometry. Birkhauser, Basel (2000)

    MATH  Google Scholar 

  10. Landi, G.: An Introduction to Noncommutative Spaces and their Geometries. Lecture Notes in Physics, vol. 51. Springer, Berlin (1997)

    MATH  Google Scholar 

  11. Madore, J.: The Fuzzy sphere. Class. Quantum Grav. 9, 6947 (1992)

    Article  MathSciNet  Google Scholar 

  12. Hoppe, J.: Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph.D. thesis, MIT (1982)

  13. de Wit, B., Hoppe, J., Nicolai, H.: On the quantum mechanics of supermembranes. Nucl. Phys. B 305, 545 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fiore, G., Pisacane, F.: Fuzzy circle and new fuzzy sphere through confining potentials and energy cutoffs. J. Geom. Phys. 132, 423–451 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  16. Grosse, H., Klimcik, C., Presnajder, P.: On finite 4D quantum field theory in non-commutative geometry. Commun. Math. Phys. 180, 429–438 (1996)

    Article  ADS  Google Scholar 

  17. Ramgoolam, S.: On spherical harmonics for fuzzy spheres in diverse dimensions. Nucl. Phys. B 610, 461–488 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dolan, B.P., O’Connor, D.: A Fuzzy three sphere and fuzzy tori. JHEP 0310, 060 (2003). https://doi.org/10.1088/1126-6708/2003/10/060. [arXiv:hep-th/0306231]

    Article  ADS  MathSciNet  Google Scholar 

  19. Sperling, M., Steinacker, H.: Covariant 4-dimensional fuzzy spheres, matrix models and higher spin. J. Phys. A Math. Theor. 50, 375202 (2017)

    Article  MathSciNet  Google Scholar 

  20. Schrödinger, E.: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    Article  ADS  Google Scholar 

  21. Klauder, J.R.: The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 11, 123–168 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  22. Glauber, R.J.: Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  23. Perelomov, A.M.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 26 (1972)

    Article  MathSciNet  Google Scholar 

  24. Klauder, J.R., Skagerstam, B.S.: Coherent States: Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    Book  Google Scholar 

  25. Ali, D.S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets, and Their Generalizations. Springer, Berlin (2013)

    MATH  Google Scholar 

  26. Antoine, J.-P., Bagarello, F., Gazeau, J.-P. (eds.): Coherent States and Their Applications: A Contemporary Panorama. Springer, Berlin (2018)

  27. Fiore, G., Maio, A., Mazziotti, E., Guerriero, G.: On kinks and other travelling-wave solutions of a modified sine-Gordon equation. Meccanica 50, 1989 (2015)

    Article  MathSciNet  Google Scholar 

  28. Berezin, F.A.: Quantization. Math. USSR Izv. 8, 1109–1165 (1974)

    Article  Google Scholar 

  29. Berezin, F.A.: Quantization in complex symmetric spaces. Math. USSR Izv. 9, 341 (1975)

    Article  Google Scholar 

  30. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  31. Barrett, J.W., et al.: Asymptotics of 4d spin foam models. Gen. Relativ. Gravit. 43, 2421 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Steinacker, H.: String states, loops and effective actions in noncommutative field theory and matrix models. Nucl. Phys. B 910, 346–373 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Grosse, H., Madore, J.: A noncommutative version of the Schwinger model. Phys. Lett. B 283, 218 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. Medina, J., O’Connor, D.: Scalar field theory on fuzzy \(S^4\). JHEP 0311, 051 (2003)

    Article  ADS  Google Scholar 

  35. Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  Google Scholar 

  36. Fiore, G., Pisacane, F.: The \(x_i\)-eigenvalue problem on some new fuzzy spheres, arXiv:1904.08973, J. Phys. A: Math. Theor (to appear)

  37. Fiore, G., Pisacane, F.: New fuzzy spheres through confining potentials and energy cutoffs. In: Proceedings of Science, vol. 318, PoS(CORFU2017)184

  38. Gilmore, R.: Geometry of symmetrized states. Ann. Phys. 74, 391–463 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  39. Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A Gen. Phys. 4, 313 (1971)

    Article  ADS  Google Scholar 

  40. Aragone, C., Chalbaud, E., Salamó, S.: On intelligent spin states. J. Math. Phys. 17, 1963 (1976)

    Article  ADS  Google Scholar 

  41. Lévy-Leblond, J.M.: Who is afraid of nonhermitian operators? A quantum description of angle and phase. Ann. Phys. (N.Y.) 101, 319 (1976)

    Article  ADS  Google Scholar 

  42. Goodman, T.N.T., Goh, S.S.: Uncertainty principles and optimality on circles and spheres, in Advances in constructive approximation: Vanderbilt 2003, pp. 207–218. Nashboro Press, Brentwood, TN, Mod. Meth. Math. (2004)

  43. Noschese, S., Pasquini, L., Reichel, L.: Tridiagonal Toeplitz matrices: properties and novel applications. Numer. Linear Algebra Appl. 20, 302–326 (2013)

    Article  MathSciNet  Google Scholar 

  44. Abramowitz M., Stegun, I.A.: Handbook of mathematical functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, (1972)

Download references

Acknowledgements

We are grateful to F. D’Andrea and F. Bagarello for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Fiore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorems 2.1 and 4.1

Consider a generic Hilbert space \({{\mathcal {H}}}\) carrying a unitary representation of O(3). For any vector \(\psi \in {{\mathcal {H}}}\), let \(g\in O(3)\) be a \(3\times 3\) matrix such that the expectation values of \(L_j\) on \(\psi \) fulfill

$$\begin{aligned} g_{ij}\langle L_j\rangle =\delta _i^3|\langle \varvec{L}\rangle |. \end{aligned}$$
(68)

The expectation values of the \(L_j,\varvec{L}^2\) on the states \(\psi \), \(\psi ':=U(g)\psi \) fulfill \(\langle L_1\rangle '=\langle L_2\rangle '=0\), \(\langle L_3\rangle '=|\langle \varvec{L}\rangle '|=|\langle \varvec{L}\rangle |\ge 0\), \(\langle \varvec{L}^2\rangle '=\langle \varvec{L}^2\rangle \) (the second equalities hold because U(g) is unitary). Hence, \(\psi \) fulfills/saturates (17) iff \(\psi '\), respectively, fulfills/saturates

$$\begin{aligned} \langle \varvec{L}^2\rangle ' - \langle L_3\rangle '\left( \langle L_3\rangle '+1\right) \ge 0. \end{aligned}$$
(69)

If \({{\mathcal {H}}}=V_l\) the first term equals \(l(l+1)\), the inequality (69) is fulfilled, and it is saturated by \(\psi '=|l,l\rangle \), because Spec\((L_3)=\{-l,1-l,\ldots ,l\}\).

Now assume that \({{\mathcal {H}}}\) can be decomposed as the direct sum \({{\mathcal {H}}}={{\mathcal {H}}}_1\oplus {{\mathcal {H}}}_2\) of orthogonal subspaces \({{\mathcal {H}}}_1,{{\mathcal {H}}}_2\) carrying subrepresentations of O(3) and on which (17) is fulfilled; moreover, let \(\Gamma _i\subset {{\mathcal {H}}}_i\) be the subsets of vectors saturating (17). Decomposing \(\psi '=a_1\psi _1+a_2\psi _2\) and setting \(\alpha :=|a_1|^2\), we find \(0\le \alpha \le 1\), \(|a_2|^2=1-\alpha \), and

$$\begin{aligned}&\langle \varvec{L}^2\rangle '-\langle L_3\rangle '\left( \langle L_3\rangle '+1\right) \nonumber \\&\quad =\alpha \langle \varvec{L}^2\rangle _1+(1-\alpha )\langle \varvec{L}^2\rangle _2 -\left[ \alpha \langle L_3\rangle _1+(1-\alpha )\langle L_3\rangle _2\right] ^2\nonumber \\&\quad -\left[ \alpha \langle L_3\rangle _1+(1-\alpha )\langle L_3\rangle _2\right] =:f(\alpha ), \end{aligned}$$
(70)

where we have abbreviated \(\langle A\rangle _i\equiv \langle A\rangle _{\psi _i}\). The polynomial \(f'(\alpha )\) vanishes only at one point \(\alpha '\in \mathbb {R}\), which, however, is of maximum for \(f(\alpha )\), because \(f''(\alpha )=-\left[ \langle L_3\rangle _1-\langle L_3\rangle _2\right] ^2\le 0\). Hence, the minimum point of \(f(\alpha )\) in the interval [0, 1] is either 0 or 1. But, by our assumptions,

$$\begin{aligned} f(1)= & {} \langle \varvec{L}^2\rangle _1-|\langle \varvec{L}\rangle _1|\left( |\langle \varvec{L}\rangle _1|+1\right) \ge 0,\\ f(0)= & {} \langle \varvec{L}^2\rangle _2-|\langle \varvec{L}\rangle _2|\left( |\langle \varvec{L}\rangle _2|+1\right) \ge 0, \end{aligned}$$

proving that (17) is fulfilled on \({{\mathcal {H}}}\). Moreover, the set of states of \({{\mathcal {H}}}\) saturating the inequality is clearly \(\Gamma =\Gamma _1\cup \Gamma _2\).

Choosing first \({{\mathcal {H}}}_1=V_0\) and \({{\mathcal {H}}}_2=V_1\), then \({{\mathcal {H}}}_1=V_0\oplus V_1\) and \({{\mathcal {H}}}_2=V_2\), and so on, one thus iteratively proves the statements of Theorems 2.1 and 4.1 for pure states.

Similarly, we show that also mixed states (i.e., density operators) \(\rho \) fulfill (17), but cannot saturate it: abbreviating \(\langle A\rangle \equiv \langle A\rangle _\rho :=\text{ tr }(\rho A)\), let \(g\in O(3)\) be a \(3\times 3\) matrix such that the expectation values of \(L_j\) on \(\rho \) fulfill (68). Then, the expectation values of \(L_j,\varvec{L}^2\) on the state \(\rho '=U(g)\rho U^{-1}(g)\) fulfill \(\langle L_1\rangle '=\langle L_2\rangle '=0\), \(\langle L_3\rangle '=|\langle \varvec{L}\rangle '|=|\langle \varvec{L}\rangle |\ge 0\), \(\langle \varvec{L}^2\rangle '=\langle \varvec{L}^2\rangle \), and \(\rho \) fulfills/saturates (17) iff \(\rho '\) fulfills/saturates (69). If \(\rho '=\alpha \rho _1+(1-\alpha )\rho _2\), the left-hand side of (69) again takes the form (70). Hence, reasoning as before, we find that \(\rho \) fulfills (17) and that there are no mixed states saturating this inequality.

1.2 Some useful summations

From \(h(h+1)(h+2)\ldots (h+j+1)-(h-1)h(h+1)\ldots (h+j)=(j+2)h(h+1)\ldots (h+j)\) (with \(j\in \mathbb {N}_0\)) it follows

$$\begin{aligned} \sum \limits _{h=1}^n h(h+1)\ldots (h+j)=\frac{1}{j+2} n(n+1)(n+2)\ldots (n+j+1); \end{aligned}$$
(71)

this implies, in particular,

$$\begin{aligned} \sum \limits _{h=1}^n h^2= & {} \sum \limits _{h=1}^n [h(h+1)-h]=\frac{ n(n+1)(n+2)}{3}- \frac{ n(n+1)}{2}\nonumber \\= & {} \frac{ n(n+1)(2n+1)}{6},\quad \end{aligned}$$
(72)

and in the following lines we will also use

$$\begin{aligned} \sum _{h=1}^{n}h^3= & {} \frac{n^2(n+1)^2}{4},\quad \quad \nonumber \\ \sum _{h=1}^{n}h(2h+1)= & {} \frac{4n^3+9n^2+5n}{6}, \end{aligned}$$
(73)
$$\begin{aligned} \sum _{h=1}^{n}h(h+1)(2h+1)= & {} \frac{1}{2}n(n+1)^2(n+2), \end{aligned}$$
(74)
$$\begin{aligned} \sum _{h=1}^{n}\left[ h(h+1)+1\right] (2h+1)= & {} \frac{(n+1)^2(n^2+2n+2)}{2},\quad \quad \nonumber \\ \sum _{h=1}^{n}h\left( 1-\frac{1}{2h}\right)= & {} \frac{n^2}{2}. \end{aligned}$$
(75)

Using the inequalities \(1+x/2\ge \sqrt{1+x}\ge 1+x/2-x^2/8\) (the first one is valid for \(x\ge -1\), the second for \(x\le 8\)), we find

$$\begin{aligned}&1+\frac{m(m-1)}{2k}\ge b_m\ge 1+\frac{m(m-1)}{2k} -\frac{m^2(m-1)^2}{(2k)^2}\quad \end{aligned}$$
(76)
$$\begin{aligned}&\quad \Rightarrow \quad n+\frac{(n-1)n(n+1)}{6k}\ge \sum \limits _{m=1}^{n} b_m\ge n+\frac{(n-1)n(n+1)}{6k}\nonumber \\&\quad -\frac{(n-1)n(n+1)(3n^2-2)}{60k^2}. \end{aligned}$$
(77)

Using trigonometric formulae, it is straightforward to show that

$$\begin{aligned} \sum \limits _{m=2}^{n}\cos \left[ \frac{\pi (2m -1)}{2n+2}\right] =0 \end{aligned}$$
(78)

(the terms cancel pairwise: the terms with \(m=2,n\) cancel each other, the terms with \(m=3,n-1\) cancel each other, etc.), and

$$\begin{aligned} 2\sin \left[ \frac{\pi (n+1+m)}{2n+2}\right] \sin \left[ \frac{\pi (n+m)}{2n+2} \right]= & {} \cos \left[ \frac{\pi }{2n+2}\right] - \cos \left[ \frac{\pi (2n+1 +2m)}{2n+2}\right] \nonumber \\= & {} \cos \left[ \frac{\pi }{2n+2}\right] +\cos \left[ \frac{\pi (2m -1)}{2n+2}\right] . \end{aligned}$$
(79)

1.3 Proofs of some results regarding \(S^1_\Lambda \)

On a vector \(\varvec{\chi }=\sum _{m=-\Lambda }^{\Lambda }{\chi _m\psi _m}\) we find \(x_+\varvec{\chi }=\sum _{m=-\Lambda }^{\Lambda -1}\chi _mb_{m+1}\psi _{m+1}\), and

$$\begin{aligned} \langle x_+\rangle _{\varvec{\chi }}= & {} \sum \limits _{m=1-\Lambda }^{\Lambda } \overline{\chi _m}\chi _{m-1}b_m; \end{aligned}$$
(80)
$$\begin{aligned} \langle \varvec{x}^2\rangle _{\varvec{\chi }}= & {} \sum \limits _{m=1-\Lambda }^{\Lambda -1}\left( 1+\frac{m^2}{k}\right) |\chi _m|^2+ \frac{1}{2}\left[ 1+\frac{\Lambda (\Lambda -1)}{k}\right] \, (|\chi _{\Lambda }|^2+|\chi _{-\Lambda }|^2) \nonumber \\= & {} \langle \varvec{\chi },\varvec{\chi }\rangle + \sum \limits _{m=1-\Lambda }^{\Lambda -1}\frac{m^2}{k} |\chi _m|^2\nonumber \\&+ \frac{1}{2}\left[ \frac{\Lambda (\Lambda -1)}{k}-1\right] \, (|\chi _{\Lambda }|^2+|\chi _{-\Lambda }|^2) . \end{aligned}$$
(81)

We first prove (32),

$$\begin{aligned} \left\langle L\right\rangle _{\varvec{\phi }_{\alpha }^{\beta }}= & {} \frac{1}{2\Lambda +1} \sum _{m=-\Lambda }^{\Lambda }m=0,\quad \left\langle L^2\right\rangle _{\varvec{\phi }_{\alpha }^{\beta }}=\frac{1}{2\Lambda +1} \sum _{m=-\Lambda }^{\Lambda }m^2\\= & {} \frac{2}{2\Lambda +1} \sum _{m=1}^{\Lambda }m^2\overset{(72)}{=}\frac{\Lambda (\Lambda +1)}{3}. \end{aligned}$$

Now we prove (33). By (25), (72), (8081)

$$\begin{aligned} \langle \varvec{x}^2\rangle _{\varvec{\phi }_\alpha ^\beta }= & {} \langle \varvec{\phi }_\alpha ^\beta ,\varvec{x}^2\varvec{\phi }_\alpha ^\beta \rangle = 1+ \frac{2}{2\Lambda +1}\sum \limits _{m=1}^{\Lambda }\frac{m^2}{k}- \frac{1}{2\Lambda +1} \left[ \frac{\Lambda (\Lambda +1)}{k}+1\right] \\= & {} 1+ \frac{\Lambda (\Lambda +1)}{3k}- \frac{1}{2\Lambda +1} \left[ \frac{\Lambda (\Lambda +1)}{k}+1\right] =\frac{2\Lambda }{2\Lambda +1}+ \frac{2(\Lambda -1) \Lambda (\Lambda +1)}{3(2\Lambda +1)k}, \end{aligned}$$

as claimed. Now we are able to prove (34):

$$\begin{aligned} \left( \Delta \varvec{x}\right) ^2_{\varvec{\phi }_\alpha ^\beta }&=\langle \varvec{x}^2\rangle _{\varvec{\phi }_\alpha ^\beta }-|\langle x_+\rangle _{\varvec{\phi }_\alpha ^\beta }|^2 =\frac{2\Lambda }{2\Lambda +1}+ \frac{2(\Lambda ^2-1)}{3(2\Lambda +1)k}-\frac{4}{(2\Lambda +1)^2}\left[ \sum \limits _{m=1}^{\Lambda } b_m\right] ^2\\&\overset{1\le b_m}{\le }\frac{2\Lambda }{2\Lambda +1}+ \frac{2(\Lambda ^2-1)\Lambda }{3(2\Lambda +1)k}-\frac{4\Lambda ^2}{(2\Lambda +1)^2}\\&\overset{(5)}{\le }\frac{2\Lambda }{2\Lambda +1}-\frac{4\Lambda ^2}{(2\Lambda +1)^2}+ \frac{2(\Lambda -1)}{3(2\Lambda +1)\Lambda (\Lambda +1)}< \frac{2\Lambda }{(2\Lambda +1)^2}+\frac{1}{3\Lambda (\Lambda +1)}\\&< \frac{2\Lambda }{4\Lambda (\Lambda +1)}+\frac{1}{3\Lambda (\Lambda +1)}= \frac{1}{\Lambda +1} \left( \frac{1}{2}+\frac{1}{3\Lambda }\right) \overset{\Lambda \ge 2}{\le }\frac{2}{3(\Lambda +1)}. \end{aligned}$$

We now prove (36). On a generic normalized \(\varvec{\chi }\) (8081) with \(\Lambda =1\) gives

$$\begin{aligned} \langle \varvec{x}^2\rangle _{\varvec{\chi }}= & {} \frac{1}{2}\left[ 1+|\chi _0|^2\right] =\frac{1}{2}\left[ 1+s\right] ,\quad \langle x_+\rangle _{\varvec{\chi }} =\overline{\chi _0}\chi _{-1}+\overline{\chi _1}\chi _0,\nonumber \\ |\langle x_+\rangle _{\varvec{\chi }}|^2= & {} |\chi _0|^2\left( |\chi _1|^2 +|\chi _{-1}|^2\right) +(\chi _0^2\overline{\chi _1} \overline{\chi _{-1}}+\overline{\chi _0}^2\chi _1\chi _{-1})=s(1-s) +2st\cos \alpha ,\nonumber \\ (\Delta \varvec{x})^2_{\varvec{\chi }}= & {} \langle \varvec{x}^2\rangle _{\varvec{\chi }}-|\langle x_+\rangle _{\varvec{\chi }}|^2 =\frac{1}{2}\left[ 1-s\right] +s^2-2st\cos \alpha \end{aligned}$$
(82)

where \(s:=|\chi _0|^2\le 1\), \(t:=|\chi _1\chi _{-1}|\), and \(\alpha \) is the phase of \(\chi _0^2\overline{\chi _1}\overline{\chi _{-1}}\); by the Cauchy–Schwarz inequality \(t\le \left( |\chi _1|^2+|\chi _{-1}|^2\right) /2=(1-s)/2\). For fixed s, (82) is minimized by \(\alpha =0\) and \(t=(1-s)/2\) (namely \(|\chi _1|=|\chi _{-1}|=\sqrt{t}=\sqrt{(1-s)/2}\)), what then yields

$$\begin{aligned} (\Delta \varvec{x})^2_{\varvec{\chi }} =\frac{1}{2}(1-s)+s^2-s(1-s)=2s^2-\frac{3}{2} s+\frac{1}{2}. \end{aligned}$$

This is minimized by \(s=3/8\), and the minimum value is \((\Delta \varvec{x})^2_{\mathrm{{min}}} =7/32\), as claimed. The corresponding minimizing vectors are \(\underline{\varvec{\chi }}= \frac{\sqrt{5}}{4}\left[ \mathrm{e}^{i\beta }\psi _{-1}+\mathrm{e}^{i\gamma }\psi _1\right] +\frac{\sqrt{3}}{\sqrt{8}}\mathrm{e}^{i(\beta +\gamma )/2}\psi _0\); the one in (36) is chosen so that \(\langle x_+\rangle \in \mathbb {R}\).

Next, we prove (37). Up to normalization, the components of the eigenvector \(\varvec{\chi }\) of the Toeplitz matrix \(X_0\) with the maximal eigenvalue (\(\lambda _M=\cos \left[ \pi /(2\Lambda +2)\right] \)) are [see (20)]

$$\begin{aligned} \chi _m=\sin \left[ \frac{\pi (\Lambda +1 +m)}{2\Lambda +2}\right] = \cos \left[ \frac{\pi m}{2\Lambda +2}\right] ; \end{aligned}$$
(83)

then \(\langle \varvec{\chi },\varvec{\chi }\rangle =\Lambda +1\),

$$\begin{aligned} \begin{aligned} \langle \varvec{\chi },\varvec{x}^2\varvec{\chi }\rangle&{\mathop {=}\limits ^{(81)}} \langle \varvec{\chi },\varvec{\chi }\rangle + 2\sum \limits _{m=1}^{\Lambda -1}\frac{m^2}{k}\chi _m^2+ \left[ \frac{\Lambda (\Lambda -1)}{k}-1\right] \, \chi _{\Lambda }^2 \\&= \Lambda +1+ 2\sum \limits _{m=1}^{\Lambda -1}\frac{m^2}{k}\chi _m^2+ \left[ \frac{\Lambda (\Lambda -1)}{k}-1\right] \, \chi _{\Lambda }^2\\&\overset{\chi _m^2\le 1}{\le }\Lambda +1+ 2\sum \limits _{m=1}^{\Lambda -1}\frac{m^2}{k}+ \left[ \frac{\Lambda (\Lambda -1)}{k}-1\right] \, \chi _{\Lambda }^2\\&\overset{(5)}{\le }\Lambda +1+ 2\sum \limits _{m=1}^{\Lambda -1}\frac{m^2}{k} {\mathop {=}\limits ^{(72)}} \Lambda +1+\frac{\Lambda (\Lambda -1)(2\Lambda -1)}{3k}, \end{aligned} \end{aligned}$$

which implies

$$\begin{aligned} \begin{aligned} \langle \varvec{x}^2\rangle _{\varvec{\chi }}&= \frac{\langle \varvec{\chi },\varvec{x}^2\varvec{\chi }\rangle }{\langle \varvec{\chi },\varvec{\chi }\rangle }\le 1+ \frac{\Lambda (\Lambda -1)(2\Lambda -1)}{3k(\Lambda +1)} \overset{(5)}{\le }1\\&\quad +\, \frac{\Lambda (\Lambda -1)(2\Lambda -1)}{3\Lambda ^2(\Lambda +1)^3}\le 1+ \frac{1}{(\Lambda +1)^2}. \end{aligned} \end{aligned}$$
(84)

Moreover, due to (76), (77), \(\chi _{-m}=\chi _m\in \mathbb {R}\), it is \(\langle x_1\rangle _{\varvec{\chi }}=\langle x_+\rangle _{\varvec{\chi }}\) because the latter is real, whence

$$\begin{aligned} \langle \varvec{\chi },x_1\varvec{\chi }\rangle&{\mathop {=}\limits ^{(80)}} 2 \sum \limits _{m=1}^{\Lambda } b_m\sin \left[ \frac{\pi (\Lambda +1+m)}{2\Lambda +2}\right] \sin \left[ \frac{\pi (\Lambda +m)}{2\Lambda +2}\right] \nonumber \\&\overset{b_m\ge 1}{\ge }2 \sum \limits _{m=1}^{\Lambda } \sin \left[ \frac{\pi (\Lambda +1 +m)}{2\Lambda +2}\right] \sin \left[ \frac{\pi (\Lambda +m)}{2\Lambda +2}\right] \nonumber \\&{\mathop {=}\limits ^{(79)}} \sum \limits _{m=1}^{\Lambda } \left\{ \cos \left[ \frac{\pi }{2\Lambda +2}\right] +\cos \left[ \frac{\pi (2m-1)}{2\Lambda +2}\right] \right\} \nonumber \\&\overset{(78)}{=}(\Lambda +1) \cos \left[ \frac{\pi }{2\Lambda +2}\right] \quad \Longrightarrow \nonumber \\ \langle x_1\rangle _{\varvec{\chi }}^2&= \left( \frac{\langle \varvec{\chi },x_1\varvec{\chi }\rangle }{\langle \varvec{\chi },\varvec{\chi }\rangle }\right) ^2 \ge \cos ^2\left[ \frac{\pi }{2\Lambda +2}\right] =1{-}\sin ^2 \left[ \frac{\pi }{2\Lambda +2}\right] {\ge } 1-\left( \frac{\pi }{2\Lambda +2}\right) ^2, \end{aligned}$$
(85)
$$ \begin{aligned} \left( \Delta {\varvec{x}}\right) ^2_{\varvec{\chi }}&=\langle \varvec{x}^2\rangle _{\varvec{\chi }}- \langle x_1\rangle _{\varvec{\chi }}^2 \nonumber \\&\overset{(84) \& (85)}{\le }1+\frac{1}{(\Lambda +1)^2}-1+\left( \frac{\pi }{2\Lambda +2}\right) ^2 =\frac{1+\frac{\pi ^2}{4}}{(\Lambda +1)^2}<\frac{3.5}{(\Lambda +1)^2}. \end{aligned}$$
(86)

1.4 States saturating the Heisenberg UR (13) on \(S^1,S^1_\Lambda \)

For any \(\mu \in \mathbb {R}\), \(i=1,2\) let \(a^\mu _i:=L-i\mu x_i\), \(z_i:=\langle L\rangle - i\mu \langle x_i\rangle \), \(A^\mu _i:= a^\mu _i-z_i\). The inequality \(0\le \langle A^\mu _i{}^\dagger A^\mu _i\rangle =\left( \Delta L\right) ^2+\mu ^2(\Delta x_i)^2+\mu \epsilon ^{ij}\langle x_j\rangle \) (here \(\epsilon ^{11}=\epsilon ^{22}=0\), \(\epsilon ^{12}=-\epsilon ^{21}=1\), and a sum over \(j=1,2\) is understood) is saturated on the states annihilated by \(A^\mu _i\), which are the eigenvectors \(\varvec{\chi }=\sum _{n}\chi _n\psi _n\) of \(a^\mu _i\); here, the sum runs over \(n\in \mathbb {Z}\) for \(S^1\) [where by \(\psi _n\) we mean \((x_+)^n=\mathrm{e}^{in\varphi }\)], over \(n\in I_\Lambda :=\{-\Lambda , 1-\Lambda ,\ldots ,\Lambda \}\) for \(S^1_\Lambda \). We can just stick to \(i=1\); the UR will be thus saturated on the eigenvectors of \(a^\mu _1\). The results for \(a^\mu _2\) can be obtained by a rotation of \(\pi /2\), by the O(2)-equivariance.

One easily checks that \(a^\mu _1\varvec{\chi }=z{}\varvec{\chi }\) in \({{\mathcal {H}}}=\mathcal{L}^2(S^1)\) amounts to the equations

$$\begin{aligned} 2\chi _n(n-z{})-i\mu (\chi _{n+1}+\chi _{n-1})=0, \quad n\in \mathbb {Z}. \end{aligned}$$
(87)

One way to fulfill them (with a non trivial \(\varvec{\chi }\)) is with \(\mu =0\); this implies \(\chi _n=0\) for all n but one, i.e., \(\varvec{\chi }\propto \psi _m\) for some \(m\in \mathbb {Z}\), and \(z{}=\langle L\rangle =m\). This is actually the only way: if \(\mu \ne 0\), then the equations can be used as recurrence relations to determine all the \(\chi _n\) as combinations of two, e.g., \(\chi _0,\chi _1\); if the latter vanish so do all \(\chi _n\), otherwise the resulting sequence does not lead to a \(\varvec{\chi }\in {{\mathcal {H}}}\) because \(\sum _n|\chi _n|^2=\infty \). In fact, rewriting (87) in the form \(\chi _{n+1}=-\chi _{n-1}+C_n\chi _n\), with \(C_n:=\frac{2}{i\mu }(n-z{})\) it is easy to iteratively prove the relation

$$\begin{aligned} \chi _{n+1}=\chi _{n}Q_n -\frac{\chi _0}{Q_1Q_2\ldots .Q_{n-1}},\quad Q_1:=C_1,\quad Q_n:=C_n-\frac{1}{Q_{n-1}}. \end{aligned}$$

This implies that as \(n\rightarrow \infty \)\(|C_n|\rightarrow \infty \), \(|Q_n|\simeq |C_n|\rightarrow \infty \), \(|\chi _{n+1}/\chi _{n}|^2\simeq |Q_n|^2\rightarrow \infty \), whence by the D’Alembert criterion the series \(\sum _{n=0}^\infty |\chi _{n}|^2\) diverges. The \(\psi _m\) are also eigenvectors of \(a^2_{\mu =0}\) and therefore saturate not only (13)\(_1\), but also (13)\(_2\), and therefore all of (13).

One easily checks that the eigenvalue equation \(a^\mu _1\varvec{\chi }=z{}\varvec{\chi }\) in \({{\mathcal {H}}}_\Lambda \) (i.e., on \(S^1_\Lambda \)) amounts to the equations

$$\begin{aligned} \begin{array}{ll} 2\chi _{-\Lambda }(\Lambda +z{})+i\mu \, b_{1-\Lambda }\chi _{1-\Lambda }=0,&{}\\ 2\chi _n(n-z{})-i\mu (b_{n+1}\chi _{n+1}+b_n\chi _{n-1})=0, \quad &{} n=1-\Lambda ,2-\Lambda ,\ldots ,\Lambda -1,\\ 2\chi _{\Lambda }(\Lambda -z{})-i\mu \, b_{\Lambda }\chi _{\Lambda -1}=0 &{} \end{array} \end{aligned}$$
(88)

(actually the second equations include also the first, third, because for \(n=\pm \Lambda \), \(b_{-\Lambda }=b_{\Lambda +1}=0\)). One way to fulfill (88) is with \(\mu =0\); this implies \(\chi _n=0\) for all n but one, i.e., \(\varvec{\chi }\propto \psi _m\) for some \(m\in I_\Lambda \), and \(z{}=\langle L\rangle =m\). But nontrivial solutions exist also with nonzero \(\mu \ne 0\). In fact, equations (88) can be used as recurrence relations to determine all the \(\chi _n\) in terms of one. If we use them in the order to express first \(\chi _{1-\Lambda }\) as \(\chi _{-\Lambda }\) times a factor, then \(\chi _{2-\Lambda }\) as \(\chi _{-\Lambda }\) times another factor, etc., then the last equation amounts to the eigenvalue equation, a polynomial equation in z of degree \((2\Lambda +1)\). Note that if z is an eigenvalue and \(\varvec{\chi }\) the corresponding eigenvector, then also \(z'=-z\) is an eigenvalue with corresponding eigenvector characterized by components \(\chi _n'=(-1)^n\chi _{-n}\). Since \(a^\mu _2=\mathrm{e}^{-i\pi L/2}a^\mu _1 \mathrm{e}^{i\pi L/2}\), to each eigenvector \(\varvec{\chi }\) of \(a^\mu _1\) there corresponds the one \(\varvec{\chi }'=\mathrm{e}^{-i\pi L/2}\varvec{\chi }\) of \(a^\mu _2\) with the same eigenvalue z and components related by \(\chi '_n=\chi _n(-i)^n\). Hence, \(\varvec{\chi }\) cannot be a simultaneous eigenvector of \(a^\mu _1,a^\mu _2\) and therefore again cannot saturate all of (13), but only one of the first two inequalities, unless \(\mu =0\), namely unless it is an eigenvector of L; hence, again the \(\psi _m\) are the only states saturating all of (13).

We determine the eigenvectors of \(a_1^\mu \) for \(\Lambda =1\). The eigenvalue equation amounts to \(z(z^2-1+\mu ^2/2)=0\). We easily find that (88) admits the following solutions:

$$\begin{aligned} z{}=0, \, \pm \sqrt{1-\frac{\mu ^2}{2}} ,\quad \varvec{\chi }=\chi _{-1} \left\{ \psi _{-1}+ \frac{2i}{\mu }(1+z{})\psi _0- \left[ 1+\frac{4z{}}{\mu ^2}(1+z{})\right] \psi _1\right\} .\nonumber \\ \end{aligned}$$
(89)

\(\Vert \varvec{\chi }\Vert ^2=1\) amounts to \(\frac{|\chi _{-1}|^2}{\mu ^4}\left\{ \mu ^4+4\mu ^2|1+z{}|^2+ \left| \mu ^2+4z{}(1+z{})\right| ^2\right\} =1\). This leads to

$$\begin{aligned}&z{}=0\quad \Rightarrow \quad |\chi _{-1}|^2=\frac{\mu ^2}{2\mu ^2+4} \\&z{}=\pm \sqrt{1-\frac{\mu ^2}{2}}\Rightarrow z\in \left\{ \begin{array}{l}\mathbb {R},\\ i\mathbb {R},\end{array}\right. \quad |\chi _{-1}|^2 =\left\{ \begin{array}{ll}\frac{\mu ^4}{32(1+z)-8\mu ^2} &{}\quad \text{ if } \mu ^2\le 2,\\ \frac{1}{4}&{}\quad \text{ if } \mu ^2\ge 2.\end{array}\right. \end{aligned}$$

In the \(\mu \rightarrow 0\) limit, we recover the eigenvectors \(\psi _1,\psi _0,\psi _{-1}\) of L with eigenvalues \(-1,0,1\), whereas in the \(\mu \rightarrow \infty \) limit we recover the eigenvectors \(\varphi _-,\varphi _0,\varphi _+\) of \(x_1\) with eigenvalues \(-\sqrt{2}/2,0,\sqrt{2}/2\) (we obtain them in the reverse order \(\varphi _+,\varphi _0,\varphi _-\) in the limit \(\mu \rightarrow -\infty \)). On the other hand, if \(\mu ^2=2\), then all eigenvalues coincide with the zero eigenvalue, which remains with geometric multiplicity 1; in other words, in this case (only) there is no basis of \({{\mathcal {H}}}_\Lambda \) consisting of eigenvectors of \(a_1^\mu \). Moreover, recalling that \(z=\langle L\rangle - i\mu \langle x_1\rangle \) we find that if \(\mu ^2\le 2\), then \(\langle x_1\rangle =0\) on all eigenvectors (because z is real), whereas if \(\mu ^2\ge 2\), then \(\langle L\rangle =0\) on all eigenvectors (because z is purely imaginary). One easily checks that

$$\begin{aligned} \langle x_1\rangle + i\langle x_2\rangle =\langle x_+\rangle =\frac{2i}{\mu }|\chi _{-1}|^2\left[ 2+z+\bar{z}+\frac{4z}{\mu ^2}|1+z{}|^2\right] , \end{aligned}$$

leading to

$$\begin{aligned} z{}= & {} 0,\quad \mu ^2\le 2 \Rightarrow \langle x_1\rangle =0,\quad \langle x_2\rangle =\frac{2\mu }{\mu ^2+2},\langle \varvec{x}\rangle ^2= \frac{4\mu ^2}{(\mu ^2+2)^2}, \end{aligned}$$
(90)
$$\begin{aligned} z{}= & {} 0,\quad \mu ^2\ge 2\quad \Rightarrow \quad \langle x_1\rangle =0,\quad \langle x_2\rangle =\frac{1}{\mu },\quad \langle \varvec{x}\rangle ^2=\frac{1}{\mu ^2}, \end{aligned}$$
(91)
$$\begin{aligned} z{}= & {} \pm \sqrt{1-\frac{\mu ^2}{2}},\quad \mu ^2\le 2\quad \Rightarrow \quad \langle x_1\rangle =0, \quad \langle x_2\rangle =\frac{\mu }{2},\langle \varvec{x}\rangle ^2=\frac{\mu ^2}{4}, \end{aligned}$$
(92)
$$\begin{aligned} z{}= & {} \pm i\sqrt{\frac{\mu ^2}{2}- 1},\quad \mu ^2\ge 2\quad \Rightarrow \quad \langle x_1\rangle =\frac{\mp 1}{\mu }\sqrt{\frac{\mu ^2}{2}- 1}, \nonumber \\ \langle x_2\rangle= & {} \frac{1}{\mu },\quad \langle \varvec{x}\rangle ^2=\frac{1}{2}. \end{aligned}$$
(93)

As on \({{\mathcal {H}}}_1\) it is \(\varvec{x}^2=1-({\tilde{P}}_1+{\tilde{P}}_{-1})/2\) we find

$$\begin{aligned} \langle \varvec{x}^2\rangle =1-\frac{|\chi _{-1}|^2}{2}\left\{ 1+\left| 1+\frac{4z}{\mu ^2}(1+z)\right| ^2\right\} \end{aligned}$$

leading to

$$\begin{aligned} z{}= & {} 0,\quad \mu ^2\le 2 \Rightarrow \langle \varvec{x}^2\rangle =\frac{\mu ^2+4}{2(\mu ^2+2)},\quad (\Delta \varvec{x})^2=\frac{1}{2}+\frac{2-3\mu ^2}{(\mu ^2+2)^2}, \end{aligned}$$
(94)
$$\begin{aligned} z{}= & {} 0,\quad \mu ^2\ge 2\quad \Rightarrow \quad \langle \varvec{x}^2\rangle =\frac{\mu ^2+4}{2(\mu ^2+2)},\quad (\Delta \varvec{x})^2=\frac{\mu ^4+2\mu ^2-4}{2\mu ^2(\mu ^2+2)}, \end{aligned}$$
(95)
$$\begin{aligned} z{}= & {} \pm \sqrt{1-\frac{\mu ^2}{2}},\quad \mu ^2\le 2\quad \Rightarrow \quad \langle \varvec{x}^2\rangle =\frac{1}{2}+\frac{\mu ^2}{8}, \quad (\Delta \varvec{x})^2=\frac{1}{2}-\frac{\mu ^2}{8}, \end{aligned}$$
(96)
$$\begin{aligned} z{}= & {} \pm i\sqrt{\frac{\mu ^2}{2}- 1},\quad \mu ^2\ge 2\quad \Rightarrow \quad \langle \varvec{x}^2\rangle =\frac{3}{4}, \quad (\Delta \varvec{x})^2=\frac{1}{4}. \quad \end{aligned}$$
(97)

We also find

$$\begin{aligned} z{}=0,\quad\Rightarrow & {} \quad \left( \Delta L\right) ^2=\langle L^2\rangle =\frac{\mu ^2}{\mu ^2+2}, \end{aligned}$$
(98)
$$\begin{aligned} z{}=\pm \sqrt{1-\frac{\mu ^2}{2}},\quad \mu ^2\le 2\quad\Rightarrow & {} \quad \left( \Delta L\right) ^2=1- \frac{\mu ^2}{4}- \left[ 1-\frac{\mu ^2(1+z)}{4(1+z)-\mu ^2} \right] ^2, \end{aligned}$$
(99)
$$\begin{aligned} z{}=\pm i\sqrt{\frac{\mu ^2}{2}- 1},\quad \mu ^2\ge 2\quad\Rightarrow & {} \quad \left( \Delta L\right) ^2=\langle L^2\rangle =\frac{1}{2}. \quad \end{aligned}$$
(100)

For all \(\mu \)\(\varvec{\chi }_\alpha :=\mathrm{e}^{i\alpha L}\varvec{\chi }\) is characterized by the same \((\Delta \varvec{L})^2,(\Delta \varvec{x})^2\) as \(\varvec{\chi }\). For all \(\mu \ne 0\) and any of the eigenvectors \(\varvec{\chi }\) of \(a^\mu _1\) the system \(X:=\{\varvec{\chi }_\alpha \}_{\alpha \in [0,2\pi [}\) is complete (actually overcomplete), but the resolution of the identity \(\int _0^{2\pi } \mathrm{d}\alpha \,\varvec{\chi }_\alpha \langle \varvec{\chi }_\alpha ,\cdot \rangle =c I\) does not hold.

1.5 Proof of Theorem 4.2

This is based on the following two lemmas:

Lemma 6.1

Let \(P^h=\sum _{l=|h|}^{\Lambda } {\varvec{\psi }}_l^h\langle {\varvec{\psi }}_l^h,\cdot \rangle \) be the projector on the \(L_3=h\) eigenspace. Then,

$$\begin{aligned} \int ^{2\pi }_0\mathrm{d}\alpha \, \mathrm{e}^{i\alpha (L_3-h)}=2\pi P^h . \end{aligned}$$
(101)

This can be proved applying both sides to the basis vectors \({\varvec{\psi }}_l^m\). In Sect. 6.6, we prove

Lemma 6.2

If \(\vert h\vert ,\vert n\vert \le l,j\) then

$$\begin{aligned} \int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^n,\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{h},{\varvec{\psi }}_l^n\rangle =\frac{2}{2l+1}\delta _{lj}. \end{aligned}$$
(102)

Now let \(B:=\int _{SO(3)} \mathrm{d}\mu (g) \,P_g^\beta \), with a generic \(\varvec{\omega }=\sum \nolimits _{l=0}^{\Lambda }\sum \nolimits _{h=-l}^{l} \omega _l^h{\varvec{\psi }}_l^h\); we compute \(B{\varvec{\psi }}_l^n\) (\(|n|\le l\)):

$$\begin{aligned} B{\varvec{\psi }}_l^n&=\int ^{2\pi }_0 \mathrm{d}\varphi \int ^{\pi }_0\mathrm{d}\theta \sin \theta \int ^{2\pi }_0\mathrm{d}\alpha \, \mathrm{e}^{i\varphi L_3}\mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}\varvec{\omega }\, \langle \mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}\varvec{\omega },\mathrm{e}^{-i\varphi L_3}{\varvec{\psi }}_l^n\rangle \\&{\mathop {=}\limits ^{(39)}}\int ^{2\pi }_0\mathrm{d}\varphi \,\mathrm{e}^{i\varphi (L_3-n)}\int ^{\pi }_0\mathrm{d}\theta \sin \theta \int ^{2\pi }_0\mathrm{d}\alpha \, \mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}\varvec{\omega }\, \langle \mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}\varvec{\omega },{\varvec{\psi }}_l^n\rangle \\&{\mathop {=}\limits ^{(101)}}2\pi \sum _{j=|n|}^{\Lambda } {\varvec{\psi }}_{j}^n\int ^{\pi }_0\mathrm{d}\theta \sin \theta \int ^{2\pi }_0\mathrm{d}\alpha \, \langle {\varvec{\psi }}_{j}^n,\mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}\varvec{\omega }\rangle \, \langle \mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}\varvec{\omega },{\varvec{\psi }}_l^n\rangle \\&\,\,=2\pi \sum _{j=|n|}^{\Lambda } {\varvec{\psi }}_{j}^n\int ^{\pi }_0\mathrm{d}\theta \sin \theta \int ^{2\pi }_0\mathrm{d}\alpha \, \sum _{h=-l}^{l}\overline{\omega _l^h}\sum _{m=-j}^{j} \omega _j^m\langle {\varvec{\psi }}_{j}^n,\mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}{\varvec{\psi }}_{j}^{m}\rangle \, \\&\quad \langle \mathrm{e}^{i\theta L_2}\mathrm{e}^{i\alpha L_3}{\varvec{\psi }}_l^{h},{\varvec{\psi }}_l^n\rangle \\&\,\,=2\pi \sum _{j=|n|}^{\Lambda } {\varvec{\psi }}_{j}^n\sum _{h=-l}^{l}\overline{\omega _l^h}\sum _{m=-j}^{j}\omega _j^m \int ^{\pi }_0\mathrm{d}\theta \sin \theta \int ^{2\pi }_0\mathrm{d}\alpha \, \mathrm{e}^{i\alpha (m-h)} \langle {\varvec{\psi }}_{j}^n,\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{m}\rangle \, \\&\quad \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{h},{\varvec{\psi }}_l^n\rangle \\&{\mathop {=}\limits ^{(101)}}(2\pi )^2\sum _{j=|n|}^{\Lambda } {\varvec{\psi }}_{j}^n\sum _{h=-m_{jl}}^{m_{jl}}\overline{\omega _l^h}\omega _j^h \int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^n,\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{h},{\varvec{\psi }}_l^n\rangle \\ \end{aligned}$$

where \(m_{jl}:=\min \{j,l\}\). By (102) this becomes \(B{\varvec{\psi }}_l^n={\varvec{\psi }}_{l}^n\sum \nolimits _{h=-l}^{l} |\omega _l^h|^2 8\pi ^2/(2l+1)\). In order that this equals \(C{\varvec{\psi }}_l^n\), i.e., that \(B=CI\) with some constant \(C>0\), it must be \(\sum \nolimits _{h=-l}^{l}|\omega _l^h|^2 =C(2l+1)/8\pi ^2\) for all \(l=0,\ldots ,\Lambda \). Summing over l and imposing that \({\varvec{\omega }}\) be normalized, we find

$$\begin{aligned} 1= & {} \Vert \varvec{\omega }\Vert ^2=\sum _{l=0}^{\Lambda }\sum \limits _{h=-l}^{l}|\omega _l^h|^2 =\sum _{l=0}^{\Lambda }\frac{2l+1}{8\pi ^2}C\nonumber \\= & {} \frac{(\Lambda +1)^2}{8\pi ^2}C \quad \Rightarrow \quad C=\frac{8\pi ^2}{(\Lambda +1)^2}, \end{aligned}$$
(103)

as claimed. The strong SCS \(\{{\varvec{\omega }}_g\}_{g\in SO(3)}\) is fully O(3)-equivariant if \(\omega _l^h=\omega _l^{-h}\) , because then it is mapped into itself also by the unitary transformation \({\varvec{\psi }}_l^h\mapsto {\varvec{\psi }}_l^{-h}\) that corresponds to the transformation of the coordinates (with determinant -1) \((x_1,x_2,x_3)\mapsto (x_1,-x_2,x_3)\).

1.6 Proof of Lemma 6.2

First we recall that, denoting as F(abcz) the Gauss hypergeometric function and as \((z)_n\) the Pochhammer’s symbol, then, by definition,

$$\begin{aligned} (z)_n:=\frac{\Gamma (z+n)}{\Gamma (z)}\quad \text{ and }\quad F(-n,b;c;z):=\sum _{m=0}^n{n\atopwithdelims ()m} \frac{(-1)^m z^m (b)_m}{(c)_m}. \end{aligned}$$
(104)

According to [44] p. 561 eq 15.4.6, one has

$$\begin{aligned} F(-n,\alpha +1+\beta +n;\alpha +1;x)=\frac{n!}{(\alpha +1)_n}P_n^{(\alpha ,\beta )}(1-2x), \end{aligned}$$
(105)

where \(P_n^{(\alpha ,\beta )}\) is the Jacobi polynomial. From p. 556 Eq. 15.1.1 one has

$$\begin{aligned} F(a,b;c;z)=F(b,a;c;z), \end{aligned}$$
(106)

p. 559 Eq. 15.3.3

$$\begin{aligned} F(a,b;c;z)=(1-z)^{c-a-b}F(c-a,c-b;c;z) \end{aligned}$$
(107)

and from p. 774

$$\begin{aligned}&\int _{-1}^1(1-x)^{\alpha }(1+x)^{\beta }P_n^{(\alpha ,\beta )}(x)P_m^{(\alpha ,\beta )}(x)\mathrm{d}x\nonumber \\&\quad =\frac{2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}\frac{\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!\Gamma (n+\alpha +\beta +1)}\delta _{nm}. \end{aligned}$$
(108)

In addition, we need the following

Proposition 6.1

Let \(l\ge s\ge h\ge -l\) and

$$\begin{aligned} f(l,h,s):=\left\{ \begin{array}{ll} \prod _{j=h}^{s-1}\left[ l(l+1)-j(j+1)\right] &{}\quad \text{ if }\,\,h<s,\\ 1&{}\quad \text{ if } \,\,h=s; \end{array}\right. \end{aligned}$$
(109)

then

$$\begin{aligned} f(l,h,s)=\frac{(l-h)!(l+s)!}{(l+h)!(l-s)!}. \end{aligned}$$
(110)

Proof

When \(h=s\),

$$\begin{aligned} f(l,h,h)=1=\frac{(l-h)!(l+h)!}{(l+h)!(l-h)!}; \end{aligned}$$

assume that \(h<s\) and (induction hypothesis)

$$\begin{aligned} f(l,h,s-1)=\frac{(l-h)!(l+s-1)!}{(l+h)!(l-s+1)!}, \end{aligned}$$

so

$$\begin{aligned} f(l,h,s)= & {} f(l,h,s-1)\left[ l(l+1)-(s-1)s\right] \\= & {} \frac{(l-h)!(l+s-1)!}{(l+h)!(l-s+1)!}(l+s)(l-s+1)=\frac{(l-h)!(l+s)!}{(l+h)!(l-s)!}. \end{aligned}$$

\(\square \)

In the same way, one can prove that when \(l\ge s\ge h\ge -l\), and setting

$$\begin{aligned} g(l,h,s):=\left\{ \begin{array}{ll} \prod _{j=h+1}^{s}\left[ l(l+1)-j(j-1)\right] &{}\quad \text{ if }\,\,h<s,\\ 1&{}\quad \text{ if }\,\, h=s; \end{array}\right. \end{aligned}$$
(111)

then

$$\begin{aligned} g(l,h,s)=\frac{(l-h)!(l+s)!}{(l+h)!(l-s)!}; \end{aligned}$$
(112)

so, when \(l\ge s\ge h\ge -l\),

$$\begin{aligned} f(l,h,h)= & {} 1=g(l,-h,-h)\quad \text{ and }\nonumber \\ f(l,h,s)= & {} \prod _{j=h}^{s-1}\left[ l(l+1)-j(j+1)\right] \nonumber \\= & {} \prod _{j=-s+1}^{-h}\left[ l(l+1)-j(j-1)\right] =g(l,-s,-h). \end{aligned}$$
(113)

We need to point out that when \(0\le n\le h\le l\),

$$\begin{aligned} A&:= \left\langle \mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^h, \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^n\right\rangle \\ \overset{(109)}{=}&\left\langle \sum _{s=h}^l\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{s-h}}{(s-h)!}\sqrt{f(l,h,s)}{\varvec{\psi }}_l^s,\right. \\&\quad \left. \sum _{r=n}^l \frac{\left( -1\right) ^{r-n}\left( \tan {\frac{\theta }{2}}\right) ^{r-n}}{(r-n)!}\sqrt{f(l,n,r)}{\varvec{\psi }}_l^r \right\rangle \\ \overset{n\le h}{=}&\left( -1\right) ^{h-n} \sum _{s=h}^l (-1)^{s-h}\frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-h}}{(s-h)!}\sqrt{f(l,h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-n}}{(s-n)!}\sqrt{f(l,n,s)}\\&= \left( -1\right) ^{h-n}\sum _{s=h}^l (-1)^{s-h}\frac{1}{(s-h)!}\sqrt{f(l,h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{n+h}\\&\quad \left( \sin {\frac{\theta }{2}}\right) ^{2s-n-h} \frac{1}{(s-n)!}\sqrt{f(l,n,s)}\\ \overset{(110)}{=}&\left( -1\right) ^{h-n}\left( \cos {\frac{\theta }{2}}\right) ^{n+h}\left( \sin {\frac{\theta }{2}}\right) ^{h-n}\\&\quad \sqrt{\frac{(l-n)!(l-h)!}{(l+n)!(l+h)!}}\sum _{s=h}^{l}(-1)^{s-h}\frac{(l+s)!}{(l-s)!(s-n)!(s-h)!}\left( \sin {\frac{\theta }{2}}\right) ^{2(s-h)}\\ \overset{j=s-h}{=}&\left( -1\right) ^{h-n}\left( \cos {\frac{\theta }{2}}\right) ^{n+h}\left( \sin {\frac{\theta }{2}}\right) ^{h-n}\sqrt{\frac{(l-n)!(l-h)!}{(l+n)!(l+h)!}}\sum _{j=0}^{l-h}(-1)^{j}\\&\quad \frac{(l+h+j)!}{(l-h-j)!(h-n+j)!(j)!}\left( \sin {\frac{\theta }{2}}\right) ^{2j},\\ \end{aligned}$$
$$\begin{aligned} A&\overset{(104)}{=} \left( -1\right) ^{h-n}\left( \cos {\frac{\theta }{2}}\right) ^{n+h}\left( \sin {\frac{\theta }{2}}\right) ^{h-n}\sqrt{\frac{(l-n)!(l-h)!}{(l+n)!(l+h)!}}\nonumber \\&\qquad \qquad \quad \cdot \frac{(l+h)!}{(l-h)!(h-n)!}F\left( -(l-h),l+h+1;h-n+1;\left( \sin {\frac{\theta }{2}}\right) ^{2} \right) \nonumber \\&\overset{(105)}{=} \left( -1\right) ^{h-n}\left( \cos {\frac{\theta }{2}}\right) ^{n+h}\left( \sin {\frac{\theta }{2}}\right) ^{h-n}\nonumber \\&\quad \sqrt{\frac{(l-n)!(l+h)!}{(l+n)!(l-h)!}}\, \frac{(l-h)!(h-n)!}{(h-n)!(l-n)!} \,P_{l-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) \nonumber \\&\quad = \left( -1\right) ^{h-n}\left( \cos {\frac{\theta }{2}}\right) ^{n+h}\left( \sin {\frac{\theta }{2}}\right) ^{h-n}\nonumber \\&\quad \sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}} \, P_{l-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) ,\end{aligned}$$
(114)
$$\begin{aligned}&\left\langle \mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{-h}, \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{-n}\right\rangle \nonumber \\&\quad \overset{(111)}{=}\left\langle \sum _{s=-h}^{-l}\left( \cos {\frac{\theta }{2}}\right) ^{-2s} \frac{\left( -1\right) ^{-s-h}\left( \tan {\frac{\theta }{2}}\right) ^{-s-h}}{(-s-h)!}\sqrt{g(l,s,-h)}{\varvec{\psi }}_l^s,\right. \nonumber \\&\quad \left. \sum _{r=-n}^{-l} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{-r-n}}{(-r-n)!}\sqrt{g(l,r,-n)}{\varvec{\psi }}_l^r \right\rangle \nonumber \\&\quad \overset{(113)}{=} \left\langle \sum _{s=-h}^{-l}\left( \cos {\frac{\theta }{2}}\right) ^{-2s} \frac{\left( -1\right) ^{-s-h}\left( \tan {\frac{\theta }{2}}\right) ^{-s-h}}{(-s-h)!}\sqrt{f(l,h,-s)}{\varvec{\psi }}_l^s,\right. \nonumber \\&\quad \left. \sum _{r=-n}^{-l} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{-r-n}}{(-r-n)!}\sqrt{f(l,n,-r)}{\varvec{\psi }}_l^r \right\rangle \nonumber \\&\quad \overset{r, s\rightarrow -r,-s}{=}\left\langle \sum _{s=h}^{l}\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left( -1\right) ^{s-h}\left( \tan {\frac{\theta }{2}}\right) ^{s-h}}{(s-h)!}\sqrt{f(l,h,s)}{\varvec{\psi }}_l^{-s},\right. \nonumber \\&\quad \left. \sum _{r=n}^{l} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{r-n}}{(r-n)!}\sqrt{f(l,n,r)}{\varvec{\psi }}_l^{-r} \right\rangle \nonumber \\&\quad \overset{n\le h}{=}\sum _{s=h}^l (-1)^{s-h}\frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-h}}{(s-h)!}\sqrt{f(l,h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-n}}{(s-n)!}\sqrt{f(l,n,s)}\nonumber \\&\quad =\sum _{s=h}^l (-1)^{s-h}\frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-h}}{(s-h)!}\sqrt{f(l,h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-n}}{(s-n)!}\sqrt{f(l,n,s)}\nonumber \\&\quad \overset{(114)}{=}\left( \cos {\frac{\theta }{2}}\right) ^{n+h} \left( \sin {\frac{\theta }{2}}\right) ^{h-n}\sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}} P_{l-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) , \end{aligned}$$
(115)
$$\begin{aligned} B&:= \left\langle \mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^{-h}, \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^n\right\rangle \nonumber \\&\overset{(109)}{=}\left\langle \sum _{s=-h}^l\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{s+h}}{(s+h)!}\sqrt{f(l,-h,s)}{\varvec{\psi }}_l^s,\right. \nonumber \\&\quad \left. \sum _{r=n}^l \frac{\left( -1\right) ^{r-n}\left( \tan {\frac{\theta }{2}}\right) ^{r-n}}{(r-n)!}\sqrt{f(l,n,r)}{\varvec{\psi }}_l^r \right\rangle \nonumber \\&\overset{-h\le n}{=}\sum _{s=n}^l (-1)^{s-n}\frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s+h}}{(s+h)!}\sqrt{f(l,-h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-n}}{(s-n)!}\sqrt{f(l,n,s)}\nonumber \\&=\sum _{s=n}^l (-1)^{s-n}\frac{1}{(s+h)!}\sqrt{f(l,-h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{n-h}\left( \sin {\frac{\theta }{2}} \right) ^{2s-n+h} \nonumber \\&\quad \frac{1}{(s-n)!}\sqrt{f(l,n,s)},\nonumber \\ B&\overset{(110)}{=}\left( \cos {\frac{\theta }{2}}\right) ^{n-h}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l-n)!(l+h)!}{(l+n)!(l-h)!}}\sum _{s=n}^{l}(-1)^{s-n}\nonumber \\&\quad \frac{(l+s)!}{(l-s)!(s-n)!(s+h)!}\left( \sin {\frac{\theta }{2}}\right) ^{2(s-n)}\nonumber \\&\overset{j=s-n}{=}\left( \cos {\frac{\theta }{2}}\right) ^{n-h}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l-n)!(l+h)!}{(l+n)!(l-h)!}}\nonumber \\&\quad \cdot \sum _{j=0}^{l-n}(-1)^{j}\frac{(l+n+j)!}{(l-n-j)!(j)!(h+n+j)!}\left( \sin {\frac{\theta }{2}}\right) ^{2j}\nonumber \\&\overset{(104)}{=}\left( \cos {\frac{\theta }{2}}\right) ^{n-h}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l-n)!(l+h)!}{(l+n)!(l-h)!}}\nonumber \\&\quad \cdot \frac{(l+n)!}{(l-n)!(h+n)!}F\left( -(l-n),l+n+1;h+n+1;\left( \sin {\frac{\theta }{2}}\right) ^{2} \right) \nonumber \\&\overset{(107)}{=}\left( \cos {\frac{\theta }{2}}\right) ^{n-h}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l+n)!(l+h)!}{(l-n)!(l-h)!}}\frac{1}{(h+n)!}\nonumber \\&\quad \cdot \left[ 1-\left( \sin {\frac{\theta }{2}}\right) ^{2}\right] ^{h-n}F\left( l+h+1,-(l-h);h+n+1;\left( \sin {\frac{\theta }{2}}\right) ^{2} \right) \nonumber \\&\overset{(105)}{=}\left( \cos {\frac{\theta }{2}}\right) ^{h-n}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l+n)!(l+h)!}{(l-n)!(l-h)!}}\frac{1}{(h+n)!}\nonumber \\&\quad \cdot \frac{(l-h)!(h+n)!}{(l+n)!} P_{l-h}^{(h+n,h-n)}\left( 1-2\sin ^2{\frac{\theta }{2}} \right) \nonumber \\&=\left( \cos {\frac{\theta }{2}}\right) ^{h-n}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}} P_{l-h}^{(h+n,h-n)}\left( 1-2\sin ^2{\frac{\theta }{2}} \right) \end{aligned}$$
(116)

and

$$\begin{aligned} \begin{aligned} D&:= \left\langle \mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{h}, \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{-n}\right\rangle \\&\overset{(111)}{=}\left\langle \sum _{s=h}^{-l} \left( \cos {\frac{\theta }{2}}\right) ^{-2s} \frac{\left( -1\right) ^{h-s} \left( \tan {\frac{\theta }{2}}\right) ^{h-s}}{(h-s)!}\sqrt{g(l,s,h)}{\varvec{\psi }}_l^s,\right. \\&\quad \left. \sum _{s=-n}^{-l} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{-s-n}}{(-s-n)!} \sqrt{g(l,s,-n)}{\varvec{\psi }}_l^s \right\rangle \\&\overset{(113)}{=} \left\langle \sum _{s=h}^{-l}\left( \cos {\frac{\theta }{2}}\right) ^{-2s} \frac{\left( -1\right) ^{h-s}\left( \tan {\frac{\theta }{2}}\right) ^{h-s}}{(h-s)!} \sqrt{f(l,-h,-s)}{\varvec{\psi }}_l^s,\right. \\&\quad \left. \sum _{s=-n}^{-l} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{-s-n}}{(-s-n)!}\sqrt{f(l,n,-s)} {\varvec{\psi }}_l^s \right\rangle \\&\overset{s\rightarrow -s}{=}\left\langle \sum _{s=-h}^{l} \left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left( -1\right) ^{s+h} \left( \tan {\frac{\theta }{2}}\right) ^{s+h}}{(s+h)!}\sqrt{f(l,-h,s)}{\varvec{\psi }}_l^{-s},\right. \\&\quad \left. \sum _{s=n}^{l} \frac{\left( \tan {\frac{\theta }{2}}\right) ^{s-n}}{(s-n)!} \sqrt{f(l,n,s)}{\varvec{\psi }}_l^{-s} \right\rangle \\&\overset{-h\le n}{=}\sum _{s=n}^l (-1)^{s+h}\frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s+h}}{(s+h)!}\sqrt{f(l,-h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{2s} \frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-n}}{(s-n)!}\sqrt{f(l,n,s)}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} D&=(-1)^{h+n}\sum _{s=n}^l (-1)^{s-n}\frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s+h}}{(s+h)!}\sqrt{f(l,-h,s)}\left( \cos {\frac{\theta }{2}}\right) ^{2s}\\&\quad \frac{\left[ \tan {\frac{\theta }{2}} \right] ^{s-n}}{(s-n)!}\sqrt{f(l,n,s)}\\&\overset{(116)}{=} (-1)^{h+n}\left( \cos {\frac{\theta }{2}}\right) ^{h-n}\left( \sin {\frac{\theta }{2}}\right) ^{h+n}\sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}} P_{l-h}^{(h+n,h-n)}\\&\quad \left( 1-2\sin ^2{\frac{\theta }{2}} \right) . \end{aligned} \end{aligned}$$
(117)

Finally, when \(l\ge h\ge n\ge 0\), one has

$$\begin{aligned}&\begin{aligned} \frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}\frac{1}{2^{2h}} \cdot \frac{2^{(h+n)+(h-n)+1}}{2(l-h)+(h+n)+(h-n)+1}&\\ \cdot \frac{\Gamma ((l-h)+(h+n)+1)\Gamma ((l-h)+(h-n)+1)}{(l-h)! \Gamma ((l-h)+(h+n)+(h-n)+1)}&=\frac{2}{2l+1}, \end{aligned}\end{aligned}$$
(118)
$$\begin{aligned}&\begin{aligned} \frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}\frac{1}{2^{2h}} \cdot \frac{2^{(h-n)+(h+n)+1}}{2(l-h)+(h-n)+(h+n)+1}&\\ \cdot \frac{\Gamma ((l-h)+(h-n)+1)\Gamma ((l-h)+(h+n)+1)}{(l-h)!\Gamma ((l-h)+(h-n)+(h+n)+1)}&=\frac{2}{2l+1}. \end{aligned} \end{aligned}$$
(119)

We are now ready to prove the aforementioned lemma.

Assume that \(0\le n\le h\le l\); by means of the Gauss decomposition, \(\mathrm{e}^{i\theta L_2}\) can be written in the “antinormal form” (see, e.g., Eq. (4.3.14) in [35])

$$\begin{aligned} \mathrm{e}^{i\theta L_2} =\mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}\mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}; \end{aligned}$$
(120)

hence

$$ \begin{aligned}&\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^n,\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{h},{\varvec{\psi }}_l^n\rangle \\&\quad =\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \overline{\left\langle \mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_j^h, \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_j^n\right\rangle }\\&\quad \left\langle \mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^h, \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_+} {\varvec{\psi }}_l^n\right\rangle \\&\quad \overset{(114)}{=}2 (-1)^{2(h-n)} \int _0^{\pi }\mathrm{d}\theta \left( \cos {\frac{\theta }{2}}\right) ^{2(n+h)+1} \left( \sin {\frac{\theta }{2}}\right) ^{2(h-n)+1}\\&\quad \sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}}\sqrt{\frac{(j-h)!(j+h)!}{(j+n)!(j-n)!}} \\&\quad \cdot P_{l-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) P_{j-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) \\&\quad \overset{x=1-2\sin ^2\frac{\theta }{2}}{=}\sqrt{\frac{(l -h)!(l+h)!}{(l+n)!(l-n)!}} \sqrt{\frac{(j-h)!(j+h)!}{(j +n)!(j-n)!}}\\&\quad \int \limits _{-1}^1 \frac{\mathrm{d}x}{2^{2h}}\, (1-x)^{h-n} (1+x)^{h+n}P_{l-h}^{(h-n,h+n)}\left( x\right) P_{j-h}^{(h-n,h+n)}\left( x\right) \\&\quad \overset{(108) \& (118)}{=}\frac{2}{2l+1}\delta _{lj}. \end{aligned}$$

On the other hand, in order to calculate \( \displaystyle \int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^{-n},\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{-h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{-h},{\varvec{\psi }}_l^{-n}\rangle , \) we can use now the “normal form” of the Gauss decomposition (see, e.g., Eq. (4.3.12) in [35])

$$\begin{aligned} \mathrm{e}^{i\theta L_2} =\mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}\mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}, \end{aligned}$$
(121)

and we obtain

$$ \begin{aligned} \begin{aligned}&\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^{-n},\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{-h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{-h},{\varvec{\psi }}_l^{-n}\rangle \\&\quad =\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \overline{\left\langle \mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_j^{-h}, \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_j^{-n}\right\rangle }\\&\quad \left\langle \mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{-h}, \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{-n}\right\rangle \\&\quad \overset{(115)}{=}2 \int _0^{\pi }\mathrm{d}\theta \left( \cos {\frac{\theta }{2}}\right) ^{2(n+h)+1} \left( \sin {\frac{\theta }{2}}\right) ^{2(h-n)+1}\\&\quad \sqrt{\frac{(l-h)! (l+h)!}{(l+n)!(l-n)!}}\sqrt{\frac{(j-h)!(j+h)!}{(j+n)!(j-n)!}} \\&\quad \cdot P_{l-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) P_{j-h}^{(h-n,h+n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) \\&\quad \overset{x=1-2\sin ^2\frac{\theta }{2}}{=}\sqrt{\frac{(l -h)!(l+h)!}{(l+n)!(l-n)!}} \sqrt{\frac{(j-h)!(j+h)!}{(j+n)! (j-n)!}}\frac{1}{2^{2h}}\\&\quad \int \limits _{-1}^1 \mathrm{d}x \,(1-x)^{h-n} (1+x)^{h+n}P_{l-h}^{(h-n,h+n)}\left( x\right) P_{j-h}^{(h-n,h+n)}\left( x\right) \\&\quad \overset{(108) \& (118)}{=}\frac{2}{2l+1}\delta _{lj}. \end{aligned} \end{aligned}$$

Furthermore

$$ \begin{aligned}&\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^{n},\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{-h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{-h},{\varvec{\psi }}_l^{n}\rangle \\&\quad \overset{(120)}{=}\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \overline{\left\langle \mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_j^{-h}, \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_j^n\right\rangle }\\&\quad \left\langle \mathrm{e}^{2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^{-h}, \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_+}{\varvec{\psi }}_l^n\right\rangle \\&\quad \overset{(116)}{=}2 \int _0^{\pi }\mathrm{d}\theta \left( \cos {\frac{\theta }{2}}\right) ^{2(h-n)+1} \left( \sin {\frac{\theta }{2}}\right) ^{2(h+n)+1}\\&\quad \sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}}\sqrt{\frac{(j-h)!(j+h)!}{(j+n)!(j-n)!}} \\&\quad \cdot P_{l-h}^{(h+n,h-n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) P_{j-h}^{(h+n,h-n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) \\&\quad \overset{x=1-2\sin ^2\frac{\theta }{2}}{=}\sqrt{\frac{(l-h)!(l+h)!}{(l+n)! (l-n)!}}\sqrt{\frac{(j-h)! (j+h)!}{(j+n)!(j-n)!}}\frac{1}{2^{2h}}\\&\quad \int \limits _{-1}^1 \mathrm{d}x\, (1-x)^{h+n} (1+x)^{h-n}P_{l-h}^{(h+n,h-n)}\left( x\right) P_{j-h}^{(h+n,h-n)}\left( x\right) \\&\quad \overset{(108) \& (119)}{=}\frac{2}{2l+1}\delta _{lj} \end{aligned}$$

and, finally, as claimed,

$$ \begin{aligned}&E:= \int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \langle {\varvec{\psi }}_{j}^{-n},\mathrm{e}^{i\theta L_2}{\varvec{\psi }}_{j}^{h}\rangle \, \langle \mathrm{e}^{i\theta L_2}{\varvec{\psi }}_l^{h},{\varvec{\psi }}_l^{-n}\rangle \\&\quad \overset{(121)}{=}\int ^{\pi }_0\mathrm{d}\theta \sin \theta \, \overline{\left\langle \mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_j^{h}, \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_j^{-n}\right\rangle }\\&\qquad \left\langle \mathrm{e}^{-2\log {\left( \cos {\frac{\theta }{2}} \right) }L_0} \mathrm{e}^{-{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{h}, \mathrm{e}^{{\tan {\frac{\theta }{2}}}L_-}{\varvec{\psi }}_l^{-n}\right\rangle \\&\quad \overset{(117)}{=} 2 (-1)^{2(h+n)} \int _0^{\pi }\mathrm{d}\theta \left( \cos {\frac{\theta }{2}}\right) ^{2(h-n)+1}\left( \sin {\frac{\theta }{2}}\right) ^{2(h+n)+1}\\&\qquad \sqrt{\frac{(l-h)!(l+h)!}{(l+n)!(l-n)!}}\sqrt{\frac{(j-h)!(j+h)!}{(j+n)!(j-n)!}} \\&\qquad \cdot P_{l-h}^{(h+n,h-n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) P_{j-h}^{(h+n,h-n)}\left( 1-2\sin ^2\frac{\theta }{2}\right) ,\\&E\overset{x=1-2\sin ^2\frac{\theta }{2}}{=}\sqrt{\frac{(l-h)!(l+h)!}{(l+n)! (l-n)!}}\sqrt{\frac{(j-h)!(j+h)!}{(j+n)!(j-n)!}}\frac{1}{2^{2h}} \\&\qquad \int \limits _{-1}^1 \mathrm{d}x\, (1-x)^{h+n} (1+x)^{h-n}P_{l-h}^{(h+n,h-n)}\left( x\right) P_{j-h}^{(h+n,h-n)}\left( x\right) \\&\qquad \overset{(108) \& (119)}{=}\frac{2}{2l+1}\delta _{lj}. \end{aligned}$$

1.7 Proofs of some results regarding \(S^2_\Lambda \)

Proof of (57)

\(L_+{\varvec{\omega }}^\beta =0\), \(L_-{\varvec{\omega }}^\beta \) is a combination of \({\varvec{\psi }}_l^{l-1}\), therefore is orthogonal to \({\varvec{\omega }}^\beta \). Hence,

$$\begin{aligned} \langle L_\pm \rangle _{{\varvec{\omega }}^\beta }=0,\quad \Rightarrow \quad |\langle \varvec{L}\rangle _{{\varvec{\omega }}^\beta }|=\langle L_0\rangle _{{\varvec{\omega }}^\beta }=\sum _{l=0}^{\Lambda }\frac{l(2l +1)}{(\Lambda +1)^2}\overset{(73)_2}{=}\frac{\Lambda (4\Lambda +5)}{6(\Lambda +1)}; \end{aligned}$$

while

$$\begin{aligned} \left\langle \varvec{L}^2\right\rangle _{\varvec{\omega }^{\beta }}=\sum _{l=0}^{\Lambda }\frac{l(l+1)(2l+1)}{(\Lambda +1)^2} \overset{(74)}{=}\frac{\frac{1}{2}\Lambda (\Lambda +1)^2(\Lambda +2)}{(\Lambda +1)^2}=\frac{\Lambda (\Lambda +2)}{2}. \end{aligned}$$

Replacing these results in \((\Delta \varvec{L})^2_{{\varvec{\omega }}^\beta } =\langle \varvec{L}^2\rangle _{{\varvec{\omega }}^\beta }-\langle \varvec{L}\rangle _{{\varvec{\omega }}^\beta }^2\), we find

$$\begin{aligned} (\Delta \varvec{L})^2_{{\varvec{\omega }}^{\beta }}=\frac{\Lambda (\Lambda +2)}{2}-\left( \frac{\Lambda (4\Lambda +5)}{6(\Lambda +1)}\right) ^2=\frac{\Lambda (2\Lambda ^3+32\Lambda ^2+65\Lambda +36)}{36(\Lambda +1)^2}. \end{aligned}$$

On the other hand, \(x_0{\varvec{\omega }}^\beta \) is a combination of \({\varvec{\psi }}_{l-1}^{l}, {\varvec{\psi }}_{l+1}^{l}\), therefore is orthogonal to \({\varvec{\omega }}^\beta \), and \(\langle x_0\rangle =0\). Hence,

$$\begin{aligned} \left\langle \varvec{x}\right\rangle ^2= & {} \left\langle x_1\right\rangle ^2+ \left\langle x_2\right\rangle ^2+ \left\langle x_3\right\rangle ^2=\frac{\left\langle x_+ +x_- \right\rangle ^2}{4}-\frac{\left\langle x_+-x_-\right\rangle ^2}{4}+\left\langle x_0\right\rangle ^2\\= & {} \left\langle x_+\right\rangle \left\langle x_-\right\rangle =\left| \left\langle x_+\right\rangle \right| ^2,\\ \left( \Delta \varvec{x}\right) ^2= & {} \left\langle \varvec{x}^2\right\rangle -\left| \left\langle x_+\right\rangle \right| ^2. \end{aligned}$$

But

$$\begin{aligned} \left\langle \varvec{x}^2\right\rangle _{\varvec{\omega }^{\beta }}&\overset{(44)_2}{=} 1+\sum _{l=0}^{\Lambda }\frac{l(l+1)+1}{k}\frac{2l+1}{(\Lambda +1)^2} -\left[ 1+\frac{(\Lambda +1)^2}{k}\right] \frac{1}{\Lambda +1}\nonumber \\&=\frac{\Lambda }{\Lambda +1}-\frac{\Lambda +1}{k} +\frac{1}{k(\Lambda +1)^2}\left[ 2\sum _{l=0}^{\Lambda }l(l+1)(l+2)\right. \nonumber \\&\quad \left. -3 \sum _{l=0}^{\Lambda }l(l+1)+\sum _{l=0}^{\Lambda }(2l+1)\right] \nonumber \\&\overset{(75)_1}{=}\frac{\Lambda }{\Lambda +1}-\frac{\Lambda +1}{k}+\frac{1}{k(\Lambda +1)^2} \left[ \frac{\Lambda }{2} (\Lambda +1)(\Lambda +2)(\Lambda +3)\right. \nonumber \\&\quad \left. -\Lambda (\Lambda +1)(\Lambda +2)+(\Lambda +1)^2\right] \nonumber \\&=\frac{\Lambda }{\Lambda +1}-\frac{\Lambda +1}{k} +\frac{1+(\Lambda +1)^2}{2k} =\frac{\Lambda }{\Lambda +1}+\frac{\Lambda ^2}{2k}\nonumber \\&\overset{(5)}{\le }\frac{\Lambda }{\Lambda +1}+\frac{1}{2(\Lambda +1)^2}, \quad \end{aligned}$$
(122)

while

$$\begin{aligned} x_+\varvec{\omega }^{\beta }&\overset{(40)}{=}&\sum _{l=0}^{\Lambda -1}\mathrm{e}^{i\beta _l}\frac{\sqrt{2l+1}}{\Lambda +1}c_{l+1}B_l^{+,l}{\varvec{\psi }}_{l+1}^{l+1}\\&\overset{(41)}{=}&\sum _{l=0}^{\Lambda -1}\mathrm{e}^{i\beta _l}\frac{\sqrt{2l+1}}{\Lambda +1}c_{l+1}\left( -\sqrt{\frac{2l+2}{2l+3}} \right) {\varvec{\psi }}_{l+1}^{l+1}\\= & {} -\sum _{l=1}^{\Lambda }\mathrm{e}^{i\beta _{l-1}}\sqrt{\frac{(2l)(2l-1)}{2l+1}}\frac{c_l}{\Lambda +1}{\varvec{\psi }}_l^l \quad \Longrightarrow \\ \left\langle x_+\right\rangle _{\varvec{\omega }^{\beta }}= & {} -\sum _{l=1}^{\Lambda }\mathrm{e}^{i\left( \beta _{l-1}-\beta _l \right) }\frac{c_l\sqrt{(2l)(2l-1)}}{(\Lambda +1)^2}, \end{aligned}$$

so

$$\begin{aligned} \langle \varvec{x}\rangle _{\varvec{\omega }^{\beta }}^2=\left| \left\langle x_+\right\rangle _{\varvec{\omega }^{\beta }}\right| ^2= \left| \sum _{l=1}^{\Lambda }\frac{c_l2l\sqrt{1-\frac{1}{2l}}}{(\Lambda +1)^2} \mathrm{e}^{i(\beta _{l-1}-\beta _l)}\right| ^2. \end{aligned}$$

Since all \(\frac{c_l\sqrt{(2l)(2l-1)}}{(\Lambda +1)^2} > 0\), to maximize \(\left| \langle x_+\rangle _{{\varvec{\omega }}^\beta }\right| \), and thus minimize \((\Delta \varvec{x})^2_{{\varvec{\omega }}^\beta } \), we need to take all the \(\beta _l\) equal (mod. \(2\pi \)), in particular \(\beta _l=0\). \(\square \)

In this case, if we use \(\sqrt{1-\frac{1}{2l}}\ge 1-\frac{1}{2l}\)\(\forall l\in \mathbb {N}\) and \(c_l\ge 1\), we get (here and below \(\varvec{\omega }\equiv \varvec{\omega }^0\))

$$\begin{aligned} \begin{aligned} \langle \varvec{x}\rangle _{\varvec{\omega }}^2&\ge \left[ \frac{2}{(\Lambda +1)^2}\sum _{l=1}^{\Lambda }l \left( 1-\frac{1}{2l}\right) \right] ^2\overset{(75)_2}{=} \left\{ \frac{2}{(\Lambda +1)^2}\left[ \frac{\Lambda ^2}{2}\right] \right\} ^2=\frac{\Lambda ^4}{(\Lambda +1)^4}. \end{aligned} \end{aligned}$$

Finally, we find

$$\begin{aligned} \left( \Delta \varvec{x}\right) ^2_{\varvec{\omega }}= & {} \left\langle \varvec{x}^2\right\rangle _{\varvec{\omega }}-\left\langle \varvec{x}\right\rangle _{\varvec{\omega }}^2\le \frac{\Lambda }{\Lambda +1}+\frac{1}{2(\Lambda +1)^2}-\frac{\Lambda ^4}{(\Lambda +1)^4} \\= & {} \frac{2\Lambda (\Lambda +1)^3+(\Lambda +1)^2-2\Lambda ^4}{2(\Lambda +1)^4}\\= & {} \frac{6\Lambda ^3+7\Lambda ^2+4\Lambda +1}{2(\Lambda +1)^4}<\frac{3\Lambda ^3+9\Lambda ^2+9\Lambda +3}{(\Lambda +1)^4}=\frac{3}{\Lambda +1}. \end{aligned}$$

Proof of (59)

\(L_0{\varvec{\phi }}^\beta =0\), while \(L_\pm {\varvec{\phi }}^\beta \) are combinations of \({\varvec{\psi }}_l^{\pm 1}\), therefore are orthogonal to \({\varvec{\phi }}^\beta \); similarly, \(x_{\pm }{\varvec{\phi }}^\beta \) are combinations of \({\varvec{\psi }}_{l-1}^{\pm 1}, {\varvec{\psi }}_{l+1}^{\pm 1}\), therefore are orthogonal to \({\varvec{\phi }}^\beta \). Hence

$$\begin{aligned} \langle L_a\rangle _{{\varvec{\phi }}^\beta }=0,\,\,\,\langle x_\pm \rangle _{{\varvec{\phi }}^\beta }=0\quad \Rightarrow \quad \langle \varvec{L}\rangle _{{\varvec{\phi }}^\beta }=0,\quad |\langle \varvec{x}\rangle _{{\varvec{\phi }}^\beta }|=|\langle x_0\rangle _{{\varvec{\phi }}^\beta }|. \end{aligned}$$

Replacing these results in \((\Delta \varvec{L})^2=\langle \varvec{L}^2\rangle _{{\varvec{\phi }}^\beta }-\langle \varvec{L}\rangle _{{\varvec{\phi }}^\beta }^2\) and using (58), we find, as claimed

$$\begin{aligned} (\Delta \varvec{L})^2=\langle \varvec{L}^2\rangle _{{\varvec{\phi }}^\beta }= \langle {\varvec{\phi }}^\beta , \varvec{L}^2{\varvec{\phi }}^\beta \rangle =\sum _{l=1}^{\Lambda }\frac{l(l+1)(2l+1)}{(\Lambda +1)^2} {\mathop {=}\limits ^{(74)}} \frac{\Lambda (\Lambda +2)}{2}. \end{aligned}$$

On the other hand,

$$\begin{aligned} \begin{aligned} x^0\varvec{\phi }^{\beta }\overset{(40)}{=}&\sum _{l=0}^{\Lambda }\mathrm{e}^{i\beta _l}\frac{\sqrt{2l+1}}{\Lambda +1}\left( c_lA_l^{0,0}{\varvec{\psi }}_{l-1}^0+c_{l+1}B_l^{0,0}{\varvec{\psi }}_{l+1}^0\right) \\ \overset{(41)}{=}&\sum _{l=0}^{\Lambda }\frac{\mathrm{e}^{i\beta _l}}{\Lambda +1}\left( c_l\frac{l}{\sqrt{2l-1}}{\varvec{\psi }}_{l-1}^0+c_{l+1}\frac{l+1}{\sqrt{2l+3}}{\varvec{\psi }}_{l+1}^0 \right) \\ =&\sum _{l=1}^{\Lambda }\frac{\mathrm{e}^{i\beta _l}c_l}{\Lambda +1}\frac{l}{\sqrt{2l-1}}{\varvec{\psi }}_{l-1}^0+\sum _{l=0}^{\Lambda -1}\frac{\mathrm{e}^{i\beta _l}c_{l+1}}{\Lambda +1}\frac{l+1}{\sqrt{2l+3}}{\varvec{\psi }}_{l+1}^0\\ =&\sum _{l=0}^{\Lambda -1}\frac{\mathrm{e}^{i\beta _{l+1}}c_{l+1}}{\Lambda +1}\frac{l+1}{\sqrt{2l+1}}{\varvec{\psi }}_l^0+\sum _{l=1}^{\Lambda }\frac{\mathrm{e}^{i\beta _{l-1}}c_{l}}{\Lambda +1}\frac{l}{\sqrt{2l+1}}{\varvec{\psi }}_l^0,\quad \Longrightarrow \\ \left\langle x^0\right\rangle _{\varvec{\phi }^{\beta }}=&\sum _{l=0}^{\Lambda -1}\mathrm{e}^{i(\beta _{l+1}-\beta _l)}c_{l+1}\frac{l+1}{(\Lambda +1)^2}+\sum _{l=1}^{\Lambda }\mathrm{e}^{i(\beta _{l-1}-\beta _l)}c_l\frac{l}{(\Lambda +1)^2}\\ =&\sum _{l=1}^{\Lambda }\frac{2lc_l}{(\Lambda +1)^2}\cos {(\beta _{l-1}-\beta _l)}, \end{aligned} \end{aligned}$$

this means that \(\left\langle x^0\right\rangle _{\varvec{\phi }^{\beta }}^2\equiv \left\langle \varvec{x}\right\rangle _{\varvec{\phi }^{\beta }}^2 \) is maximal when \(\beta \equiv 0\), and in this case one has (here and on \(\varvec{\phi }\equiv \varvec{\phi }^0\))

$$\begin{aligned} \left\langle \varvec{x}\right\rangle _{\varvec{\phi }}^2\overset{c_l \ge 1}{\ge }\left[ \sum _{l=1}^{\Lambda }\frac{2l}{(\Lambda +1)^2}\right] ^2\overset{(71)}{=}\frac{\Lambda ^2}{(\Lambda +1)^2}. \end{aligned}$$

One easily checks that \(\langle \varvec{x}^2\rangle _{{\varvec{\phi }}^\beta }=\langle \varvec{x}^2\rangle _{{\varvec{\omega }}^\beta }\); hence, using (122), on \({\varvec{\phi }}\) it follows, as claimed

$$\begin{aligned} (\Delta \varvec{x})^2_{\varvec{\phi }}= & {} \langle \varvec{x}^2\rangle _{{\varvec{\phi }}}-\langle \varvec{x}\rangle _{{\varvec{\phi }}}^2\le \frac{\Lambda }{\Lambda +1}+\frac{1}{2(\Lambda +1)^2}-\frac{\Lambda ^2}{(\Lambda +1)^2}\\= & {} \frac{2\Lambda (\Lambda +1)+1-2\Lambda ^2}{2(\Lambda +1)^2} =\frac{2\Lambda +1}{2(\Lambda +1)^2}<\frac{1}{\Lambda +1}. \end{aligned}$$

\(\square \)

Proof of (66)

$$\begin{aligned} \begin{aligned} \left\langle \varvec{x}^2\right\rangle _{\widetilde{\varvec{\chi }}}&\overset{(44)_2}{=} \sum _{l=0}^{\Lambda }\left| \widetilde{\chi }^l \right| ^2 +\frac{\left[ \sum _{l=0}^{\Lambda }l(l+1)\left| \widetilde{\chi }^l \right| ^2\right] +1}{k(\Lambda )}\\&\qquad -\left[ 1+\frac{(\Lambda +1)^2}{k(\Lambda )}\right] \frac{\Lambda +1}{2\Lambda +1}\left| \widetilde{\chi }^{\Lambda } \right| ^2 \\&\overset{\left\| \widetilde{\varvec{\chi }}\right\| _2=1}{=}1+\frac{\left[ \sum _{l=0}^{\Lambda }l (l+1)\left| \widetilde{\chi }^l \right| ^2\right] +1}{k(\Lambda )}\\&\qquad -\left[ 1+\frac{(\Lambda +1)^2}{k(\Lambda )} \right] \frac{\Lambda +1}{2\Lambda +1}\left| \widetilde{\chi }^{\Lambda } \right| ^2 \\&\le 1+\frac{\frac{2}{\Lambda +2}\left[ \sum _{l=1}^{\Lambda }l(l+1)\right] +1}{k(\Lambda )} \overset{(71)}{\le }1+\frac{\frac{2}{3} \Lambda (\Lambda +1)+1}{k(\Lambda )} \overset{(5)}{\le }1\\&\qquad +\frac{\frac{2}{3} \Lambda (\Lambda +1)+1}{\Lambda ^2(\Lambda +1)^2}, \end{aligned} \end{aligned}$$
(123)

so, putting together (65) and (123), we obtain, as claimed,

$$\begin{aligned} (\Delta \varvec{x})^2_{\widetilde{\varvec{\chi }}}= & {} \left\langle \varvec{x}^2\right\rangle _{\widetilde{\varvec{\chi }}}-\left\langle \varvec{x}\right\rangle _{\widetilde{\varvec{\chi }}}^2 =\left\langle \varvec{x}^2\right\rangle _{\widetilde{\varvec{\chi }}}-\left\langle x_0\right\rangle _{\widetilde{\varvec{\chi }}}^2<1-\cos ^2\left( \frac{\pi }{\Lambda +2}\right) \\&+\frac{\frac{2}{3} \Lambda (\Lambda +1)+1}{\Lambda ^2(\Lambda +1)^2}\\= & {} \sin ^2\left( \frac{\pi }{\Lambda +2}\right) +\frac{\frac{2}{3} +\frac{2}{3\Lambda }+\frac{1}{\Lambda ^2}}{(\Lambda +1)^2} \overset{\Lambda \ge 3}{<}\frac{\pi ^2}{(\Lambda +2)^2}\\&+\frac{1}{(\Lambda +1)^2}<\frac{11}{(\Lambda +1)^2}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, G., Pisacane, F. On localized and coherent states on some new fuzzy spheres. Lett Math Phys 110, 1315–1361 (2020). https://doi.org/10.1007/s11005-020-01263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01263-3

Keywords

Mathematics Subject Classification

Navigation