Skip to main content
Log in

The Magneto-mechanical Properties of Cobalt Substituted Mg-Zn Nanoferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Despite increasing solicitude in magnesium-zinc ferrites as advanced ceramics, there is still much uncertainty regarding their mechanical and magnetic properties. Precursors Co2+ ions substituted magnesium zinc spinel ferrites with chemical formula Mg0.8Zn0.2-xCoxFe2O4; (0 ≤ x ≤ 0.2) (MZCFO) were scrutinized. XRD patterns confirmed the formation of the spinel structure for all MZCFO nanoferrites with no traces of any secondary phases. An excellent correlation is between the structural, mechanical, and magnetic theoretical and experimental results; supporting the validity of cation distribution. The experimental lattice parameter of MZCFO is found in the range 8.3893–8.3803 Å, and the theoretical one is found in the range 8.3882–8.3833 Å. The average crystallite size is calculated using the two methods (Debye–Scherrer and Williamson–Hall), which was found in the range ~15–50 nm, to confirm the nanocrystalline nature of all MZCFO ferrites. The FE-SEM micrographs illustrate the nanoferrite morphology exhibiting rocky-shaped particles with variable pore size. The HR-TEM micrographs of the as-prepared nanoferrites reveal agglomerated round-shaped nanoferrite particles. EDX spectra reveal the presence of all chemical elements, and SAED micrographs confirm the polycrystalline nanosized nature of MZCFO samples. Also, FTIR analysis affirmed the spinel structure by exhibiting the distinctive vibrational band of the ferrite bonds. Experimental and theoretical elastic moduli (bulk (B), rigidity (G), Young (E)) besides Poisson ratio (σ) and Debye temperature (ϴD) of MZCFO nanoferrites were investigated. The bond length is the main reason for the insignificant variation in the elastic moduli of MZCFO with further cobalt substitution. Cation distribution is the main reason for the nanoferrite Mg0.8Zn0.12Co0.08Fe2O4 (x = 0.08) to have the highest MS value (40 emu/g) and the exceptional level of flexibility obtained for the mechanical properties. The coercivity exhibits an increasing demeanor with Co2+ substitution (HC = 569.35 at x = 0.2), which is correlated to the strong magnetic anisotropy property of Co2+ species in B sites. These advantages can initiate a considerable attention in implementing this ferrite in applications such as high-density magnetic recording, loudspeakers, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mansour, S.F., Al-Wafi, R., Abdo, M.A.: Zn-Mg-La nanoferrites for storage and high frequency devices with augmenting the photocatalytic performance. J. Alloys Comp. 826, 154125 (2020)

    Article  Google Scholar 

  2. Ahmed, M.A., Mansour, S.F., Abdo, M.A.: Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86, 025705–025713 (2012)

    Article  ADS  Google Scholar 

  3. Hashim, M., Meena, S.S., Kotnala, R.K., Shirsath, S.E., Bhatt, P., Kumar, S., Şentürk, E., Kumar, R., Gupta, N., Alimuddin: Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5−xCoxFe2O4 nanocrystalline ferrite. J. Magn. Magn. Mater. 360, 21–33 (2014)

    Article  ADS  Google Scholar 

  4. Mansour, S.F., Abdo, M.A.: Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites. J. Magn. Magn. Mater. 428, 300–305 (2017)

    Article  ADS  Google Scholar 

  5. Zaki, H.M., Al-heniti, S.H., Hashhash, A.: Effect of Al 3 þ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures. J. Magn. Magn. Mater. 401, 1027–1032 (2016)

    Article  ADS  Google Scholar 

  6. Sharma, R., Thakur, P., Kumar, M., Thakur, N., Negi, N.S., Sharma, P., Sharma, V.: Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    Article  Google Scholar 

  7. Mansour, S.F., Ahmed, M.A., El-Dek, S.I., Abdo, M.A., Kora, H.H.: Enhancement of the physical properties of novel (1-x) NiFe2O4 +(x) Al2O3 nanocomposite. Appl. Phys. A Mater. Sci. Process. 123, 480 (2017)

    Article  ADS  Google Scholar 

  8. Mansour, S.F., Abdo, M.A., Kzar, F.L.: Effect of Cr dopant on the structural , magnetic and dielectric properties of Cu-Zn nanoferrites. J. Magn. Magn. Mater. 465, 176–185 (2018)

    Article  ADS  Google Scholar 

  9. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. 32, 751–767 (1976)

  10. Varma, M.C., Choudary, G., Kumar, A.M., Rao, K.H.: Estimating the cation distributions in ferrites using X-ray, FT-IR, and magnetization measurements. Phys. Res. Int. 2014, 9 (2014)

    Article  Google Scholar 

  11. Mansour, S.F., Abdo, M.A., Alwan, S.M.: The role of Cr3+ ions substitution on structural , magnetic and dielectric modulus of manganese zinc nanoferrites. Ceram. Int. 44, 8035–8042 (2018)

    Article  Google Scholar 

  12. Zakia, H.M., Al-Heniti, S.: Synthesis and characterization of nanocrystalline MgAlxFe2-xO4 ferrites. J. Mater. Res. 27, 2798–2805 (2012)

    Article  ADS  Google Scholar 

  13. Venkateswarlu, K., Sandhyarani, M., Nellaippan, T.A., Rameshbabu, N.: Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by X-ray peak variance analysis. Procedia Mater. Sci. 5, 212–221 (2014)

    Article  Google Scholar 

  14. Özkal, B.: Crystallite size and strain calculations of hard particle reinforced composite powders ( Cu / Ni / Fe – WC ) synthesized via mechanical alloying. Proc. Est. Acad. Sci. 68, 66–78 (2019)

    Article  Google Scholar 

  15. Purushotham, E., Krishna, N.G.: X-ray determination of crystallite size and effect of lattice strain on Debye – Waller factors of platinum nano powders. Indian Acad. Sci. 36, 973–976 (2013)

    Google Scholar 

  16. Mansour, S.F., Dawood, A., Abdo, M.A.: Enhansed magnetic and dielectric properties of doped Co-Zn ferrite nano paticles by virtue of Cr3+ role. J. Mater. Sci. Mater. Electron. 30, 17262–17275 (2019)

    Article  Google Scholar 

  17. Nasrin, S.: Influence of Zn substitution on the structural and magnetic properties of Co1-xZnxFe2O4 nano-ferrites. IOSR J. Appl. Phys. 6, 58–65 (2014)

    Article  Google Scholar 

  18. Havlica, J., Hnatko, M., Singh, R., Kur, I., Masilko, J., Kalina, L., Hajdúchová, M., Rusnak, J.: Structural, magnetic, elastic , dielectric and electrical properties of hot-press sintered Co1-xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Article  ADS  Google Scholar 

  19. Mansour, S.F., Al-hazmi, F., Abdo, M.A.: Relaxation time enhancement of cobalt zinc nanoferrites via Cr 3+ doping. J. Alloys Compd. 792, 626–637 (2019)

    Article  Google Scholar 

  20. Ahmed, M.A., Mansour, S.F., Abdo, M.A.: Characterization and dramatic variations of the magnetic properties of Cu-doped nanometric Co ferrite. Phys. Scr. 84, 055602–055606 (2011)

    Article  ADS  Google Scholar 

  21. Khan, S.B., Irfan, S., Lee, S.L.: Influence of Zn+2 doping on Ni-based nanoferrites; (Ni1−x ZnxFe2O4). Nanomaterials. 9, (2019)

  22. Zaki, H.M., Al-heniti, S., Al Shehri, N.: New scheme for cation distribution and electrical characterization of nanocrystalline aluminum doped magnesium ferrite MgAlxFe2-x O4. Phys. B Phys. Condens. Matter. 436, 157–163 (2014)

    Article  ADS  Google Scholar 

  23. Nairan, A., Khan, M., Khan, U., Iqbal, M., Riaz, S., Naseem, S.: Temperature-dependent magnetic response of antiferromagnetic doping in cobalt ferrite nanostructures. Nanomaterials. 6, 73 (2016)

    Article  Google Scholar 

  24. Thorat, L.M., Patil, J.Y., Nadargi, D.Y., Ghodake, U.R., Kambale, R.C., Suryavanshi, S.S.: Co2+ substituted Mg–Cu–Zn ferrite: evaluation of structural, magnetic, and electromagnetic properties. J. Adv. Ceram. 7, 207–217 (2018)

    Article  Google Scholar 

  25. Mansour, S.F., Imam, N.G., Goda, S., Abdo, M.A.: Constructive coupling between BiFeO3 and CoFe2O4; promising magnetic and dielectric properties. J Mater Res Technol. 9, 1434–1446 (2020)

    Article  Google Scholar 

  26. Muthuselvam, I.P., Bhowmik, R.N.: Connectivity between electrical conduction and thermally activated grain size evolution in Ho-doped CoFe2O4 ferrite. J. Appl. Phys. D. 43, (2010)

  27. Aneesh Kumar, K.S., Bhowmik, R.N.: Micro-structural characterization and magnetic study of Ni1.5Fe1.5O4 ferrite synthesized through coprecipitation route at different pH values. Mater. Chem. Phys. 146, 159–169 (2014)

    Article  Google Scholar 

  28. Larcan, P.J.: IR and Raman Spectroscopy. Elsevier, San diego (2011)

    Google Scholar 

  29. Mansour, S.F., Hemeda, O.M., Abdo, M.A., Nada, W.A.: Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites. J. Mol. Struct. 1152, 207–214 (2018)

    Article  ADS  Google Scholar 

  30. Khalaf, K.A.M., Al-Rawas, A.D., Widatallah, H.M., Al-Rashdi, K.S., Sellai, A., Gismelseed, A.M., Hashim, M., Jameel, S.K., Al-Ruqeishi, M.S., Al-Riyami, K.O., Shongwe, M., Al-RRajhi, A.H.: Influence of Zn2+ ions on the structural and electrical properties of Mg(1-x)ZnxFeCrO4 spinels. J. Alloys Compd. 657, 733–747 (2016)

    Article  Google Scholar 

  31. Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kurˇitka, I., Kozˇáková, Z.: Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Magn. Magn. Mater. 394, 439–447 (2015)

    Article  ADS  Google Scholar 

  32. Modi, K.B., Shah, S.J., Pujara, N.B., Pathak, T.K., Vasoya, N.H., Jhala, I.G.: Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0.5Zn0.5Fe2O4 spinel ferrite. J. Mol. Struct. 1049, 250–262 (2013)

    Article  ADS  Google Scholar 

  33. Abdellatif, M.H., Azab, A.A.: Elastic properties of Cr-doped Mn ferrite. Bull. Natl. Res. Cent. 43, (2019)

  34. Bhatu, S.S., Lakhani, V.K., Tanna, A.R., Vasoya, N.H., Buch, J.U., Sharma, P.U., Trivedi, U.N., Joshi, H.H., Modi, K.B.: Effect of nickel substitution on structural, infrared and elastic properties of lithium ferrite. Indian J. Pure Appl. Phys. 45, 596–608 (2007)

    Google Scholar 

  35. Costa, J.C., Spina, F., Lugoda, P., Garcia-Garcia, L., Roggen, D., Münzenrieder, N.: Flexible sensors—from materials to applications. Technologies. 7, 35 (2019)

    Article  Google Scholar 

  36. Kane, S.N., Raghuvanshi, S., Satalkar, M., Reddy, V.R., Deshpande, U.P., Tatarchuk, T.R., Mazaleyrat, F.: Synthesis, characterization and antistructure modeling of Ni nano ferrite. AIP Conf. Proc. 1953, (2018)

  37. Singhal, S., Namgyal, T., Bansal, S., Chandra, K.: Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route. J. Electromagn. Anal. Appl. 02, 376–381 (2010)

    ADS  Google Scholar 

  38. Mansour, S.F., Abdo, M.A., El-Dek, S.I.: Improvement of physico-mechanical properties of Mg–Zn nanoferrites via Cr3+ doping. J. Magn. Magn. Mater. 422, 105–111 (2017)

    Article  ADS  Google Scholar 

  39. Ahmed, M.A., Mansour, S.F., Abdo, M.A.: Improvement of the physical properties of novel (1-y) Co0.8Cu0.2Fe2O4 + (y) SrTiO3 nanocomposite. Mater. Res. Bull. 48, 1796–1805 (2013)

    Article  Google Scholar 

  40. Yousaf, M., Mahmood, K., Mahmood, A., Malik, H., Farooq, M., Shakir, I., Asghar, M., Azhar, M.: New Mg0.5CoxZn0.5-xFe2O4 nano-ferrites : structural elucidation and electromagnetic behavior evaluation. Curr. Appl. Phys. 14, 716–720 (2014)

    Article  ADS  Google Scholar 

  41. Mohammad, A.M., Ridha, S.M.A.L.I., Mubarak, T.H.: Structural and magnetic properties of Mg-Zn-Co ferrite. Dig. J. Nanomater. Biostructures. 13, 615–623 (2018)

    Google Scholar 

  42. Mohamed, A., Abdelbaky, A., García-Granda, A.-D.: Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials. 9, 1602 (2019)

    Article  Google Scholar 

  43. Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H., Almessiere, M., Sözeri, H., Shirsath, S., Ercan, I., Baykal, A.: Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abdo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Bassami, N.S., Mansour, S.F. & Abdo, M.A. The Magneto-mechanical Properties of Cobalt Substituted Mg-Zn Nanoferrites. J Supercond Nov Magn 33, 3077–3086 (2020). https://doi.org/10.1007/s10948-020-05562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05562-7

Keywords

Navigation