Skip to main content
Log in

Thermalization of Local Observables in the \(\alpha \)-FPUT Chain

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Most studies on the problem of equilibration of the Fermi–Pasta–Ulam–Tsingou (FPUT) system have focused on equipartition of energy being attained amongst the normal modes of the corresponding harmonic system. In the present work, we instead discuss the equilibration problem in terms of local variables, and consider initial conditions corresponding to spatially localized energy. We estimate the time-scales for equipartition of space localized degrees of freedom and find significant differences with the times scales observed for normal modes. Measuring thermalization in classical systems necessarily requires some averaging, and this could involve one over initial conditions or over time or spatial averaging. Here we consider averaging over initial conditions chosen from a narrow distribution in phase space. We examine in detail the effect of the width of the initial phase space distribution, and of integrability and chaos, on the time scales for thermalization. We show how thermalization properties of the system, quantified by its equilibration time, defined in this work, can be related to chaos, given by the maximal Lyapunov exponent. Somewhat surprisingly we also find that the ensemble averaging can lead to thermalization of the integrable Toda chain, though on much longer time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Note that for each fixed time t, the set \(\left\{ f_i(t) \right\} \) defines a discrete probability distribution over the set \(\left\{ 0,1,\dots ,N-1\right\} \), and then S(t) is just the information entropy.

References

  1. Fermi, E., Pasta, J., Ulam, S.: Studies of the nonlinear problems, 1955. Los Alamos National Laboratory Report (LA1940), also in Collected Papers of Enrico Fermi 2

  2. Dauxois, T.: Fermi, Pasta, Ulam, and a mysterious lady. Phys. Today 61(1), 55 (2008)

    ADS  Google Scholar 

  3. Ford, J.: The Fermi-Pasta-Ulam problem: Paradox turns discovery. Phys. Rep. 213(5), 271–310 (1992)

    ADS  MathSciNet  Google Scholar 

  4. Weissert, T.P.: The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem. Springer, New York (2012)

    MATH  Google Scholar 

  5. Berman, G.P., Izrailev, F.M.: The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos 15(1), 15104 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Gallavotti, G.: Introduction to FPU. In: Gallavotti, Giovanni (ed.) The Fermi-Pasta-Ulam Problem: A Status Report. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Benettin, G., Christodoulidi, H., Ponno, A.: The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J. Stat. Phys. 152, 195–212 (2013)

    ADS  MathSciNet  Google Scholar 

  8. Marin, J., Aubry, S.: Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit. Nonlinearity 9, 1501–1528 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Danieli, C., Campbell, D.K., Flach, S.: Intermittent many-body dynamics at equilibrium. Phys. Rev. E 95(6), 060202 (2017)

    ADS  Google Scholar 

  10. Flach, S., Ivanchenko, M.V., Kanakov, O.I.: \(q\)-Breathers and the Fermi-Pasta-Ulam problem. Phys. Rev. Lett. 95(6), 064102 (2005)

    ADS  Google Scholar 

  11. Flach, S., Ivanchenko, M.V., Kanakov, O.I.: \(q\)-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability. Phys. Rev. E 73(3), 036618 (2006)

    ADS  MathSciNet  Google Scholar 

  12. Christodoulidi, H., Efthymiopoulos, C., Bountis, T.: Energy localization on \(q\)-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys. Rev. E 81(1), 016210 (2010)

    ADS  Google Scholar 

  13. Onorato, M., Vozella, L., Proment, D., Lvov, Y.V.: Route to thermalization in the \(\alpha \)-Fermi–Pasta–Ulam system. PNAS 112(14), 4208–4213 (2015)

    ADS  Google Scholar 

  14. Lvov, Y.V., Onorato, M.: Double scaling in the relaxation time in the \(\beta \)-Fermi-Pasta-Ulam-Tsingou model. Phys. Rev. Lett. 120, 144301 (2018). Apr

    ADS  Google Scholar 

  15. Pistone, L., Chibbaro, S., Bustamante, M., L’vov, Y., Onorato, M.: Universal route to thermalization in weakly-nonlinear one-dimensional chains. Math. Eng. 1(4), 672 (2019)

    MATH  Google Scholar 

  16. Izrailev, F.M., Chirikov, B.V.: Statistical properties of a nonlinear string. Dokl. Akad. Nauk SSSR 166(1), 57–59 (1966)

    MATH  Google Scholar 

  17. Casetti, L., Cerruti-Sola, M., Pettini, M., Cohen, E.: The Fermi-Pasta-Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems. Phys. Rev. E 55(6), 6566 (1996)

    ADS  MathSciNet  Google Scholar 

  18. Deluca, J., Lichtenberg, A.J., Ruffo, S.: Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. Phys. Rev. E 51(4), 2877–2885 (1995)

    ADS  Google Scholar 

  19. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi-Pasta-Ulam model. Phys. Rev. A 31(2), 1039–1045 (1985)

    ADS  Google Scholar 

  20. Mazur, P., Montroll, E.: Poincaré cycles, ergodicity, and irreversibility in assemblies of coupled harmonic oscillators. J. Math. Phys. 1(1), 70–84 (1960)

    ADS  MATH  Google Scholar 

  21. Titulaer, E.M.: Ergodic features of harmonic-oscillator systems. I. Physica 70(2), 257–275 (1973)

    ADS  MathSciNet  Google Scholar 

  22. Titulaer, U.M.: Ergodic features of harmonic-oscillator systems. II. asymptotic ergodicity. Physica 70(2), 276–296 (1973)

    ADS  MathSciNet  Google Scholar 

  23. Benettin, G., Pasquali, S., Ponno, A.: The Fermi-Pasta-Ulam problem and its underlying integrable dynamics: an approach through Lyapunov exponents. J. Stat. Phys. 171(4), 521–542 (2018). Mar

    ADS  MathSciNet  MATH  Google Scholar 

  24. Lebowitz, J.L.: Statistical mechanics: a selective review of two central issues. Rev. Mod. Phys. 71(2), S346–S357 (1999). Mar

    Google Scholar 

  25. Goldstein, S., Huse, D.A., Lebowitz, J.L., Tumulka, R.: Macroscopic and microscopic thermal equilibrium. Annalen der Physik 529(7), 1600301 (2017). Feb

    ADS  MathSciNet  MATH  Google Scholar 

  26. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    ADS  MATH  Google Scholar 

  27. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Statistical description of weak wave turbulence. In: Kolmogorov Spectra of Turbulence I: Wave Turbulence, pp. 63–82. Springer, Berlin (1992)

  28. Nazarenko, S.: Wave Turbulence. Springer, Berlin (2011)

    MATH  Google Scholar 

  29. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

    ADS  MathSciNet  Google Scholar 

  30. Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22(2), 431–436 (1967)

    ADS  Google Scholar 

  31. Toda, M.: Studies of a non-linear lattice. Phys. Rep. 18(1), 1–123 (1975)

    ADS  MathSciNet  Google Scholar 

  32. Goldfriend, T., Kurchan, J.: Equilibration of quasi-integrable systems. Phys. Rev. E 99(2), 0022146 (2019)

    ADS  MathSciNet  Google Scholar 

  33. Fu, W., Zhang, Y., Zhao, H.: Universal law of thermalization for one-dimensional perturbed Toda lattices. N. J. Phys. 21(4), 043009 (2019). Apr

    MathSciNet  Google Scholar 

  34. Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature 452(7189), 854–858 (2008)

    ADS  Google Scholar 

  35. Howell, O., Weinberg, P., Sels, D., Polkovnikov, A., Bukov, M.: Asymptotic prethermalization in periodically driven classical spin chains. Phys. Rev. Lett. 122(1), 010602 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

SG would like to thank Hemanta Kumar for help with computations and Varun Dubey for useful discussions. The numerical simulations were done on Contra, Mario and Tetris computing clusters of ICTS-TIFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhosh Ganapa.

Additional information

Communicated by David Ruelle.

Dedicated to Joel Lebowitz, to thank him for being a constant source of new ideas, for explaining Boltzmann, and for his warmth and kindness.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganapa, S., Apte, A. & Dhar, A. Thermalization of Local Observables in the \(\alpha \)-FPUT Chain. J Stat Phys 180, 1010–1030 (2020). https://doi.org/10.1007/s10955-020-02576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02576-2

Keywords

Navigation