Skip to main content
Log in

Modeling and Analysis of Terahertz Graphene Switches for On-Wafer Coplanar Transmission Lines

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We present an analysis of graphene-loaded transmission line switches for sub-millimeter wave and terahertz applications. As such, we propose equivalent circuit models for graphene-loaded coplanar waveguides and striplines and examine the switching performance under certain parameters. Specifically, we identify the optimum design of graphene switches based on transmission line characteristic impedance, scaling factor, graphene shape, and topology (series or shunt). These parameters are varied to obtain the insertion loss and ON/OFF ratio of each switch configuration. The extracted results act as the design roadmap toward an optimum switch topology and emphasize the limitations with respect to fabrication challenges, parasitic effects, and radiation losses that are especially pronounced in the millimeter wave/terahertz bands. This is the first time that such an in-depth analysis is carried out on graphene-loaded transmission line switches, enabling the development of efficient millimeter wave/terahertz tunable topologies in terms of insertion loss and ON/OFF ratio. Specifically, the optimized switches can be integrated with antennas or employed for the development of tunable phase shifters, leading to the implementation of efficient reconfigurable reflective surfaces (e.g., reflectarrays) or coded phased arrays either for imaging or wireless communication applications. In our models, we use measured graphene values (sheet impedance) instead of theoretical equations, to obtain the actual switching performance. Moreover, the proposed study can be easily expanded to other thin film materials that can be characterized by a sheet impedance including vanadium dioxide and molybdenum disulfide. Finally, the proposed equivalent models are crucial for this in-depth study; since we simulated more than 2,000,000 configurations, a computationally challenging task with the use of full-wave solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. S. Rappaport et al., Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond, IEEE Access, p. 1, 2019.

  2. P. C. Theofanopoulos, M. Sakr, and G. C. Trichopoulos, Multistatic terahertz imaging using the radon transform, IEEE Trans. Antennas Propagation, p. 1, 2019.

  3. G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, A broadband focal plane array camera for real-time THz imaging applications, IEEE Trans. Antennas Propagation, vol. 61, no. 4, pp. 1733–1740, 2013.

    Article  Google Scholar 

  4. O. Yurduseven, K. Cooper, and G. Chattopadhyay, Point-spread-function (PSF) characterization of a 340-GHz imaging radar using acoustic levitation, IEEE Trans. Terahertz Science Technology, vol. 9, no. 1, pp. 20–26, 2019.

    Article  Google Scholar 

  5. P. C. Theofanopoulos and G. C. Trichopoulos, A terahertz microscopy technique for sweat duct detection, in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 864–867.

  6. S. Vakalis, L. Gong, Y. He, J. Papapolymerou and J. A. Nanzer, Experimental demonstration and calibration of a 16-element active incoherent millimeter-wave imaging array, in IEEE Transactions on Microwave Theory and Techniques, 2020.

  7. K. Liu et al., 100 Gbit/s THz photonic wireless transmission in the 350-GHz band with extended reach, IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1064–1067, 2018.

    Article  Google Scholar 

  8. X. Li et al., 120 Gb/s wireless terahertz-wave signal delivery by 375 GHz-500 GHz multi-carrier in a 2 × 2 MIMO system, J. Light. Technol., vol. 37, no. 2, pp. 606–611, 2019.

    Article  Google Scholar 

  9. V. K. Chinni et al., Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3d wireless links in the 300 GHz band, Electron. Lett., vol. 54, no. 10, pp. 638–640, 2018.

    Article  Google Scholar 

  10. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits, Sci. Rep., vol. 10, no. 1, p. 4298, 2020.

    Article  Google Scholar 

  11. S. Zhang, C. Guo, T. Wang, and W. Zhang, ON-OFF analog beamforming for massive MIMO, IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4113–4123, 2018.

    Article  Google Scholar 

  12. X. G. Zhang, W. X. Jiang, H. W. Tian, Z. X. Wang, Q. Wang and T. J. Cui, Pattern-reconfigurable planar array antenna characterized by digital coding method, IEEE Transactions on Antennas and Propagation.

  13. H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters, IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2524–2531, 2011.

    Article  Google Scholar 

  14. E. Carrasco, M. Barba, and J. A. Encinar, X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements, IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5700–5708, 2012.

    Article  Google Scholar 

  15. H. Yang et al., A programmable metasurface with dynamic polarization, scattering and focusing control, Sci. Rep., vol. 6, p. 35692, Oct. 2016.

    Article  Google Scholar 

  16. C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, Reconfigurable metasurface for multifunctional control of electromagnetic waves, Adv. Opt. Mater., vol. 5, no. 22, p. 1700485, Nov. 2017.

    Article  Google Scholar 

  17. S. Costanzo, F. Venneri, A. Raffo, and G. Di Massa, Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications, IEEE Access, vol. 6, pp. 71793–71800, 2018.

    Article  Google Scholar 

  18. Y. Han, W. Tang, S. Jin, C. Wen and X. Ma, Large intelligent surface-assisted wireless communication exploiting statistical CSI, in IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8238-8242, Aug. 2019.

  19. H. Yang et al., A study of phase quantization effects for reconfigurable reflectarray antennas, IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 302–305, 2017.

    Article  Google Scholar 

  20. A. Ç. Ulusoy et al., A low-loss and high isolation D-band SPDT switch utilizing deep-saturated SiGe HBTs, IEEE Microw. Wirel. Components Lett., vol. 24, no. 6, pp. 400–402, 2014.

    Article  Google Scholar 

  21. R. L. Schmid, A. Ç. Ulusoy, P. Song, and J. D. Cressler, A 94 GHz, 1.4 dB insertion loss single-pole double-throw switch using reverse-saturated SiGe HBTs, IEEE Microw. Wirel. Components Lett., vol. 24, no. 1, pp. 56–58, 2014.

    Article  Google Scholar 

  22. S. Lim, H. Koo, C. Kim, J. Kim, J. Rieh, and S. Hong, 290-GHz 17-dB ON-/OFF-ratio modulator with resonance control varactors, IEEE Microw. Wirel. Components Lett., vol. 29, no. 1, pp. 50–52, 2019.

    Article  Google Scholar 

  23. F. Thome, M. Ohlrogge, A. Leuther, M. Schlechtweg, and O. Ambacher, An investigation of millimeter wave switches based on shunt transistors including SPDT SWITCH MMICs up to 300 GHz, in 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1–4.

  24. D. Müller et al., A novel unit cell for active switches in the millimeter-wave frequency range, J. Infrared, Millimeter, Terahertz Waves, vol. 39, no. 2, pp. 161–176, 2018.

    Article  Google Scholar 

  25. T. Shivan et al., 220–325 GHz high-isolation SPDT switch in InP DHBT technology, Electron. Lett., vol. 54, no. 21, pp. 1222–1224, 2018.

    Article  Google Scholar 

  26. F. Thome and O. Ambacher, Highly isolating and broadband single-pole double-throw switches for millimeter-wave applications up to 330 GHz, IEEE Trans. Microw. Theory Tech., vol. 66, no. 4, pp. 1998–2009, 2018.

    Article  Google Scholar 

  27. J. D. Cressler et al., SiGe technology as a millimeter-wave platform: scaling issues, reliability physics, circuit performance, and new opportunities, in 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2016, pp. 1–13.

  28. P. C. Theofanopoulos, C. S. Lavranos, K. E. Zoiros, G. C. Trichopoulos, G. Granet, and G. A. Kyriacou, Investigation of nonreciprocal dispersion phenomena in anisotropic periodic structures based on a curvilinear FDFD method, IEEE Trans. Microw. Theory Tech., vol. 65, no. 1, pp. 36–49, 2017.

    Article  Google Scholar 

  29. M. Jost, R. Reese, M. Nickel, H. Maune, and R. Jakoby, Fully dielectric interference-based SPDT with liquid crystal phase shifters, IET Microwaves, Antennas Propag., vol. 12, no. 6, pp. 850–857, 2018.

    Article  Google Scholar 

  30. M. Kim, S. Park, A. Sanne, S. K. Banerjee, and D. Akinwande, Towards mm-wave nanoelectronics and RF switches using MoS22D Semiconductor, in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 352–354.

  31. H. Huang, B. Jiang, X. Zou, X. Zhao, and L. Liao, Black phosphorus electronics, Sci. Bull., vol. 64, no. 15, pp. 1067–1079, 2019.

    Article  Google Scholar 

  32. C. Hillman, P. A. Stupar, and Z. Griffith, VO2 switches for millimeter and submillimeter-wave applications, in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2015, pp. 1–4.

  33. C. Hillman, P. Stupar, and Z. Griffith, Scaleable vanadium dioxide switches with submillimeterwave bandwidth: VO2 switches with impoved RF bandwidth and power handling, in 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2017, pp. 1–4.

  34. H. Madan et al., 26.5 Terahertz electrically triggered RF switch on epitaxial VO2-on-Sapphire (VOS) wafer, in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 9.3.1-9.3.4.

  35. D. Fadil et al., 2D-graphene epitaxy on SiC for RF application: fabrication, electrical characterization and noise performance, in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 228–231.

  36. P. C. Theofanopoulos, S. Ageno, Y. Guo, S. Kale, Q. H. Wang, and G. C. Trichopoulos, High-yield fabrication method for high-frequency graphene devices using titanium sacrificial layers, J. Vac. Sci. Technol. B, vol. 37, no. 4, p. 41801, Jun. 2019.

  37. P. C. Theofanopoulos and G. C. Trichopoulos, On-wafer graphene devices for THz applications using a high-yield fabrication process, 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 1107-1110.

  38. Z. Miao et al., Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces, Phys. Rev. X, vol. 5, no. 4, p. 41027, Nov. 2015.

    Google Scholar 

  39. J. Liu et al., Flexible terahertz modulator based on coplanar-gate graphene field-effect transistor structure, Opt. Lett., vol. 41, no. 4, pp. 816–819, Feb. 2016.

    Article  Google Scholar 

  40. N. Kakenov, M. S. Ergoktas, O. Balci, and C. Kocabas, Graphene based terahertz phase modulators, 2D Mater., vol. 5, no. 3, p. 035018, May 2018.

    Article  Google Scholar 

  41. P. C. Theofanopoulos and G. C. Trichopoulos, Toward large-scale dynamically reconfigurable apertures using graphene, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, pp. 511-512.

  42. M. Dragoman et al., Coplanar waveguide on graphene in the range 40 MHz–110 GHz, Appl. Phys. Lett., vol. 99, no. 3, p. 33112, Jul. 2011.

    Article  Google Scholar 

  43. H.-J. Lee, E. Kim, W.-J. Lee, and J. Jung, RF transmission properties of graphene monolayers with width variation, Phys. status solidi – Rapid Res. Lett., vol. 6, no. 1, pp. 19–21, Jan. 2012.

    Article  Google Scholar 

  44. L. Pierantoni et al., Broadband microwave attenuator based on few layer graphene flakes, IEEE Trans. Microw. Theory Tech., vol. 63, no. 8, pp. 2491–2497, 2015.

    Article  Google Scholar 

  45. Y. Wu, M. Qu, and Y. Liu, A generalized lossy transmission-line model for tunable graphene-based transmission lines with attenuation phenomenon, Sci. Rep., vol. 6, p. 31760, Aug. 2016.

    Article  Google Scholar 

  46. J. Judek, M. Zdrojek, J. Sobieski, A. Przewłoka, and J. K. Piotrowski, Characterization of the CVD graphene monolayer as an active element of a one-port microwave device, IEEE Trans. Electron Devices, vol. 64, no. 10, pp. 4340–4345, 2017.

    Article  Google Scholar 

  47. N. Dib, Comprehensive study of CAD models of several coplanar waveguide (CPW) discontinuities, IEE Proc. - Microwaves, Antennas Propag., vol. 152, no. 2, pp. 69–76, 2005.

    Article  Google Scholar 

  48. L. Zheng and A. Weisshaar, Parameterised equivalent circuit model of frequency-dependent resistance and inductance for on-chip coplanar waveguides up to 110 GHz, Electron. Lett., vol. 54, no. 16, pp. 986–988, 2018.

    Article  Google Scholar 

  49. Rainee N. Simons, Coplanar waveguide circuits, components, and systems, 1st ed. New York: Wiley, 2001.

    Book  Google Scholar 

  50. Y. J. Guo, K. Da Xu, and X. Tang, Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters, Opt. Express, vol. 26, no. 8, pp. 10589–10598, 2018.

    Article  Google Scholar 

  51. B. Liu, H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and P. Excell, An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques, IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 7–18, 2014.

    Article  Google Scholar 

  52. D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.

    Google Scholar 

  53. ANSYS Electronics Desktop available at: https://www.ansys.com/products/electronics/ansys-electronics-desktop

  54. D. Rytting, Network analyzer error models and calibration methods, White Paper, Sep. 1998.

    Google Scholar 

  55. W. J. Getsinger, Circuit duals on planar transmission media, in 1983 IEEE MTT-S International Microwave Symposium Digest, 1983, pp. 154–156.

Download references

Funding

This work is partly supported by the National Science Foundation under Grant CAREER ECCS-1847138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis C. Theofanopoulos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theofanopoulos, P.C., Trichopoulos, G.C. Modeling and Analysis of Terahertz Graphene Switches for On-Wafer Coplanar Transmission Lines. J Infrared Milli Terahz Waves 41, 758–775 (2020). https://doi.org/10.1007/s10762-020-00711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00711-4

Keywords

Navigation