Skip to main content

Advertisement

Log in

All-inorganic perovskite CsPbI2Br as a promising photovoltaic absorber: a first-principles study

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Hybrid organic-inorganic halide perovskites as promising solar cell materials have great concern on their stability. Recently, all-inorganic perovskite CsPbI2Br has been considered as a first-class alternative with good stability as well as a suitable bandgap, and the highest solar cell efficiency has been achieved up to 16%. Using the first-principles calculations, we found that (i) CsPbI2Br is stable in tetragonal cell with a direct bandgap of 1.67 eV under PBE functional calculations approximating to the experimental value (1.92 eV). The upper valence band is derived from the antibonding states of s-p coupling, and the CBM is mainly composed of Pb-p states. (ii) The optical absorption is as strong as 104 cm−1 in the visible light range which can compare to that of the popular halide organic-inorganic hybrid perovskite. (iii) The electron transport material (ETM) in popular perovskite solar cells such as TiO2, ZnO, SnO2, PCBM and C60 together with the hole transport material (HTM) such as P3HT, CuI, NiO, PTAA and Spiro are suitable for CsPbI2Br solar cell devices. The band offset between different perovskites demonstrates that it is easier for CsPbI2Br to be doped p-type than for CsPbBr3 but harder than for CsPbI3.

Graphic Abstract

Band alignments of perovskites including CsPbI3, CsPbBr3, CsPbI2Br and CsSnI2Br together with the commonly used electron transport materials and hole transport materials are presented using the first principles calculations, which could help to improve the all inorganic CsPbI2Br solar cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shi J, Xu X, Li D and Meng Q 2015 Interfaces in perovskite solar cells Small 11 2472

    CAS  PubMed  Google Scholar 

  2. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Sequential deposition as a route to high-performance perovskite-sensitized solar cells Nature 499 316

    CAS  PubMed  Google Scholar 

  3. Yang W S, Park B-W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells Science 356 1376

  4. Moia D, Gelmetti I, Calado P, Fisher W, Stringer M, Game O, Hu Y, Docampo P, Lidzey D, Palomares E, Nelson J and Barnes P R 2019 Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices Energy Environ. Sci. 12 1296

    CAS  Google Scholar 

  5. Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050

    CAS  PubMed  Google Scholar 

  6. Zhao D, Wang C, Song Z, Yu Y, Chen C, Zhao X, Zhu K and Yan Y 2018 Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23% ACS Energy Lett. 3 305

  7. Wang D, Wright M, Elumalai N K and Uddin A 2016 Stability of perovskite solar cells Sol. Energy Mater. Sol. Cells 147 255

    CAS  Google Scholar 

  8. Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D and Boyen H-G 2015 Intrinsic thermal instability of methylammonium lead trihalide perovskite Adv. Energy Mater. 5 1500477

    Google Scholar 

  9. Liang J, Liu J and Jin Z 2017 All-inorganic halide perovskites for optoelectronics: progress and prospects Sol. RRL 1 1700086

    Google Scholar 

  10. Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z and Liu J 2016 All-inorganic perovskite solar cells J. Am. Chem. Soc. 138 15829

    CAS  PubMed  Google Scholar 

  11. Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 Inorganic caesium lead iodide perovskite solar cells J. Mater. Chem. A 3 19688

    CAS  Google Scholar 

  12. Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties Inorg. Chem. 52 9019

    CAS  Google Scholar 

  13. Wang Q, Jin Z, Chen D, Bai D, Bian H, Sun J, Zhu G, Wang G and Liu S 2018 µ-graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability Adv. Energy Mater. 8 1800007

    Google Scholar 

  14. Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C and Luther J M 2017 Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells Sci. Adv. 3 eaao4204

  15. Wang Q, Zheng X, Deng Y, Zhao J, Chen Z and Huang J 2017 Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films Joule 1 371

  16. Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A and Manna L 2016 Strongly emissive perovskite nanocrystal inks for high-voltage solar cells Nat. Energy 2 16194

    Google Scholar 

  17. Wang Y, Zhang T, Xu F, Li Y and Zhao Y 2018 A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells Sol. RRL 2 1700180

    Google Scholar 

  18. Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T and McGehee M D 2016 Cesium lead halide perovskites with improved stability for tandem solar cells J. Phys. Chem. Lett. 7 746

    CAS  PubMed  Google Scholar 

  19. Mariotti S, Hutter O S, Phillips L J, Yates P J, Kundu B and Durose K 2018 Stability and performance of CsPbI2Br thin films and solar cell devices ACS Appl. Mater. Inter. 10 3750

    CAS  Google Scholar 

  20. Liu C, Li W, Zhang C, Ma Y, Fan J and Mai Y 2018 All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13% J. Am. Chem. Soc. 140 3825

    CAS  PubMed  Google Scholar 

  21. Tian J, Xue Q, Tang X, Chen Y, Li N, Hu Z, Shi T, Wang X, Huang F, Brabec C J, Yip H L and Cao Y 2019 Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability Adv. Mater. 31 1901152

    Google Scholar 

  22. Wang K L, Wang R, Wang Z K, Li M, Zhang Y, Ma H, Liao L S and Yang Y 2019 Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells Nano Lett. 19 5176

  23. Chen W, Chen H, Xu G, Xue R, Wang S, Li Y and Li Y 2019 Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells Joule 3 191

  24. Jono R and Segawa H 2019 Theoretical study of the band-gap differences among lead triiodide perovskite materials: CsPbI3, MAPbI3, and FAPbI3 Chem. Lett. 48 877

    CAS  Google Scholar 

  25. Yin W-J, Shi T and Yan Y 2014 Unique properties of halide perovskites as possible origins of the superior solar cell performance Adv. Mater. 26 4653

    CAS  Google Scholar 

  26. Huang Y, Yin W-J and He Y 2018 Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3 J. Phys. Chem. C 122 1345

    CAS  Google Scholar 

  27. Feng W, Rangan S, Cao Y, Galoppini E, Bartynski RA and Garfunkel E 2014 Energy level alignment of polythiophene/ZnO hybrid solar cells J. Mater. Chem. A 2 7034

    CAS  Google Scholar 

  28. Yang Z, Dou J and Wang M 2018 Interface engineering in n‐i‐p metal halide perovskite solar cells Sol. RRL 2 1800177

    Google Scholar 

  29. Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D and Kahn A 2014 Interface energetics in organo-metal halide perovskite-based photovoltaic cells Energy Environ. Sci. 7 1377

    CAS  Google Scholar 

  30. Park N-G 2013 Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell J. Phys. Chem. Lett. 4 2423

    CAS  Google Scholar 

  31. Zhou Z, Pang S, Liu Z, Xu H and Cui G 2015 Interface engineering for high-performance perovskite hybrid solar cells J. Mater. Chem. A 3 19205

    CAS  Google Scholar 

  32. Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H and Yang B 2019 Inorganic CsPbI2Br perovskite solar cells: the progress and perspective Sol. RRL 3 1800239

    Google Scholar 

  33. Bai Y, Meng X and Yang S 2018 Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells Adv. Energy Mater. 8 1701883

    Google Scholar 

  34. Yin W-J, Shi T and Yan Y 2014 Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber Appl. Phys. Lett. 104 063903

    Google Scholar 

  35. Kresse G and Furthmüller J 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comp. Mater. Sci. 6 15

    CAS  Google Scholar 

  36. Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169

    CAS  Google Scholar 

  37. Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953

    Google Scholar 

  38. Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758

    CAS  Google Scholar 

  39. Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865

    CAS  Google Scholar 

  40. Yin W-J, Yan Y and Wei S-H 2014 Anomalous alloy properties in mixed halide perovskites J. Phys. Chem. Lett. 5 3625

    CAS  PubMed  Google Scholar 

  41. Magri R, Wei S H and Zunger A 1990 Ground-state structures and the random-state energy of the Madelung lattice Phys. Rev. B 42 11388

    CAS  Google Scholar 

  42. Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Electronic-properties of random alloys - special quasirandom structures Phys. Rev. B 42 9622

    CAS  Google Scholar 

  43. Wei S H, Ferreira L G and Zunger A 1990 1st-principles calculation of temperature-composition phase-diagrams of semiconductor alloys Phys. Rev. B 41 8240

    CAS  Google Scholar 

  44. Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Special quasirandom structures Phys. Rev. Lett. 65 353

    CAS  PubMed  Google Scholar 

  45. Mosconi E, Amat A, Nazeeruddin M K, Grätzel M and Angelis F D 2013 First-principles modeling of mixed halide organometal perovskites for photovoltaic applications J. Phys. Chem. C 117 13902

    CAS  Google Scholar 

  46. Li Y, Zhang C, Zhang X, Huang D, Shen Q, Cheng Y and Huang W 2017 Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction Appl. Phys. Lett. 111 162106

    Google Scholar 

  47. Heyd J, Scuseria G E and Ernzerhof M 2003 Hybrid functionals based on a screened Coulomb potential J. Chem. Phys. 118 8207

    CAS  Google Scholar 

  48. Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Ángyán J G 2006 Screened hybrid density functionals applied to solids J. Chem. Phys. 124 154709

    CAS  PubMed  Google Scholar 

  49. Ravindran P, Delin A, Johansson B, Eriksson O and Wills J M 1999 Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2 Phys. Rev. B 59 1776

    CAS  Google Scholar 

  50. Saha S, Sinha T P and Mookerjee A 2000 Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 Phys. Rev. B 62 8828

    CAS  Google Scholar 

  51. Murtaza G and Ahmad I 2011 First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M = Cl, Br,I) Physica B 406 3222

  52. Da P, Zheng G 2017 Tailoring interface of lead-halide perovskite solar cells Nano Res. 10 147152

    Google Scholar 

  53. Wei S-H 2004 Overcoming the doping bottleneck in semiconductors Comp. Mater. Sci. 30 337

    CAS  Google Scholar 

  54. Zhang S B, Wei S-H and Zunger A 1999 Overcoming doping bottlenecks in semiconductors and wide-gap materials Physica B 273 976

    Google Scholar 

  55. Wei S-H and Zunger A 1987 Role of d orbitals in valence-band offsets of common-anion semiconductors Phys. Rev. Lett. 59 144

    CAS  Google Scholar 

  56. Wei S-H and Zunger A 1988 Role of d Orbitals in Valence-Band Offsets of Common-Anion Semiconductors. In: Electronic Structure of Semiconductor Heterojunctions G Margaritondo (Ed.) (Dordrecht: Springer Netherlands) p. 200

  57. Peedikakkandy L and Bhargava P 2016 Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites RSC Adv. 6 19857

  58. Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S and Mathews N 2015 Impact of anionic Br–substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells J. Phys. Chem. C 119 1763

    CAS  Google Scholar 

  59. Varadwaj A, Varadwaj P R and Yamashita K 2018 Revealing the chemistry between band gap and binding energy for lead-/tin-based trihalide perovskite solar cell semiconductors ChemSusChem 11 449

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under grant No. 61704097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P. All-inorganic perovskite CsPbI2Br as a promising photovoltaic absorber: a first-principles study. J Chem Sci 132, 74 (2020). https://doi.org/10.1007/s12039-020-01780-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01780-7

Keywords

Navigation